Craner-Rao Type Bounds for Localization

Cheng Chang, Anant Sahai
Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720
Email: {cchang, sah&@eecs.berkeley.edu

Abstract—?! The localization problem is fundamentally impor-  paper we also focus on localization using ranging information
tant for sensor networks. This paper studies the Cram@r-Rao glone.

lower bound (CRB) for two kinds of localization based on noisy The Cranér-Rao lower bound (CRB) [18] is widely used to
range measurements. The first is Anchored Localization in which

the estimated positions of at least 3 nodes are known in global evaluate the fundamental hqrdr?ess O_f an estlimat'lon proplem.
coordinates. We show some basic invariances of the CRB in this The CRB for anchored localization using ranging information
case and derive lower and upper bounds on the CRB which has been studied in [19], [20], [21]. The expression for the
can be computed using only local information. The second is CRB was derived in [19]. In [21], a comparison of the CRB

Anchor-free Localization where no absolute positions are known. |, ; ; ;
Although the Fisher Information Matrix is singular, a CRB-like with the simpler Bayesian Bound has been studied. In [20],

bound exists on the total estimation variance. Finally, for both Simulation is used to study the impact of the density of the
cases we discuss how the bounds scale to large networks unde@nchors and the size of the sensor network on the CRB.

different models of wireless signal propagation. As far as anchored localization goes, our additional con-
Index Terms—Cramér-Rao bound, localization, estimation tribution_i_s giving a geometric interpretation of the CRB
bounds, ranging information, sensor networks. and deriving local lower and upper bounds on the CRB.

The lower bounds imply that local geometry is critical for
localization accuracy. The corresponding upper bounds show
through simulation that the errors are not a lot worse if only
In wireless sensor networks, the positions of the sensare nearby anchors or nodes are involved in the position
play a vital role. Position information can be exploited withistimation of a particularly node. These results show that
the network stack at all levels from improved physical layetistributed localization schemes are promising.
communication[2] to routing[3] and on to the application For anchor-free localization, as mentioned in [10], the Fisher
level where positions are needed to meaningfully interpret amformation Matrix (FIM) is singular and so the standard CRB
physical measurements the sensors may take. Because #rialysis fails[22]. The CRB on anchor-free localization has not
so important, this problem of localization has been studigéen thoroughly studied. In this paper, we give a geometric
extensively. Most of these studies assume the existence dh®rpretation on a modified CRB and derive some properties
group of “anchor nodes” that hawepriori known positions. of it. Furthermore, we show by example that anchor-free
There are three major categories of localization schemes tlalization sometimes has a lower total estimation variance
differ in what kind of geometric information they use topound than anchored localization.
estimate locations. Many, such as those of [4], [5], [6], [7], [8],
use only the connectivity information reflecting whether node .
i can directly communicate with nodg or anchork. Such A Outline of the paper
approaches are attractive because connectivity information isAfter reviewing some basics in this introduction, Section Il
accessible at the network layer due to its use in multi-hggudies bounds for anchored localization. Assuming the rang-
routing. ing errors are iid Gaussian, we give an explicit expression for
The second category uses both ranging and angular infdre FIM solely based on the geometry of the sensor network
mation for localization. Such schemes are studied in [9], [1Qnd show that the CRB is essentialy invariant under zooming,
[11]. These are useful when there is a line of sight and anterinanslation, and rotation. Using matrix theory, we give a lower
arrays are available at the sensor nodes so that beamfornbognd on the CRB that is determined by only local geometry.
is possible to determine the angles. This converges to the CRB as the local area is expanded. We
The third category is localization based solely on rangirgso give a corresponding local upper bound on the localization
measurements among nodes and between nodes and anclid®B. Finally we study the wireless situation in which the
In [12], [13], the schemes for estimating ranges are discussadise variance on the range measurements depends on the
[14], [15] estimate the positions directly based on such nodeitder-sensor distance. Simulation results validate our intuition
anchor ranging estimates. In contrast, [16], [17] first estimatieat the faster the signal decays, the less the CRB benefits
positions in an anchor-free coordinate system and then emifieom faraway information. A heuristic argument reveals the
it into the coordinate system defined by the anchors. In tHisisic scaling laws involved.

Section |l studies the bound for anchor-free localization.
1Based on “Estimation Bounds for localization” [1] by Cheng Chang anthe rank of the FIM forM nodes is shown to be at most
Anant Sahai which appeared in the First IEEE Communications Soci 1 — 3. The corresponding modified CRB is interpreted as a

Conference on Sensor and Ad Hoc Communications and Networks, 2 :
© IEEE. bound on the sum of the estimation variances. We observe that

I. INTRODUCTION



the per node bound in simulations appears to be proportionall) Anchored localization:If there are at least three nodes
to the average number of neighbors and conjecture that thith positions known in global coordinateg( > 3), then it
total estimation variance scales with the total received signalpossible to estimate such global coordinates for each node

energy. using observation® and position knowledgé’r.
D = {d; li€ SUF,j € adj(i)} )
B. Craner-Rao bound on ranging Pr = {(zi,y;)"]i € F} (3)

Since range is our basic input, we first review the CRB
for wireless ranging. The distance between two nodes s
wherec is the speed of light antj; is the time of arrival (TOA). . NT
TOA estimation is extensively studied in the radar literature. If Ps = {(:,9:)" |i € 5} )
T is the observation duration(t) is the pulsé, and N, is the
noise power spectral density, then for any unbiased estim%

Our goal is to estimate the set

tézi’yi) is the position of sensar. The measured distance
etween sensarandj is d; ; = \/(z; — ;)% + (y; — y;)% +

of tq4 [23]: ; .
a [23] N ¢;.j, wheree; ;’'s are modeled as independent Gaussian errors
El(ta =t)*) > 75100 ~ N(0,0;).
Jo 19522t
Notice that foT(aggt))th is proportional to the energy in
the signal with the proportionality constant depending on the o * o
pulse shape. Because of the derivative, we know that having ° o

a pulse with a wide bandwidth is beneficial. Calling that
proportionality 7> we have:

7'2 o,v o

E 'E —t 2 > T 1 o

[( d d) ] = SN ( )

The CRB on ranging is a fundamental bound coming only . ¢

from the Gaussian thermal noise in the received signal. In . R visible

reality, there are other sources of small ranging errors in-

cluding interference, multipath spreading, unpredictable clock

drifts, operating system latencies, etc. These can cause the

ranging error to be non-Gaussian even near the mean. M@gg 1. A sensor network, solid dots are anchors, circles are nodes with
significantly, these ranging errors do not scale with SNR. Wiaknown positions. The rangg ; is estimated for sensor paiisj s.t.d; ; <
ignore all these other sources of error in this paper. Ruisibie-

2) Anchor-free localization:If |F| = 0, no nodes have
known positions. This is an appropriate model whenever either

We idealize the localization problem by assuming all th@e do not care about absolute positions, or if whatever global
sensors are fixed on a 2-D plane. We have aSef M positions we do have are far more imprecise than the quality of
sensors with unknown positions, together with aBatf N measurements available within the sensor network. However,
sensors (anchors) with known positions. Because the sizel@fal coordinates are not unique.f = {(j%yi)Tu € S}is
each sensor is assumed to be very small, it is treated aa position estimate, theR, = { R(«) (£, 9;)7 + (a,b)7]i €
point. S} is equivalent toPs where the+ represents reflecting the

Each sensor generates limited-energy wireless signals thatire network about thg axis andR(«) is a rotation matrix:
enable node to measure the distance to some nearby sensors
in the setadj(i). We assume € adj(i) iff i € adj(j) for Rla) = ( cos(a)  —sin(a) ) )
symmetry. Throughout, we also assume high $NRd so sin(a) cos(a)

are free to assume that the distance measurements are (%rr]]ly th ; ; hor-f localizati
corrupted by independent zero mean Gaussian errors. us, theé performance measure 1or anchor-iree localization

should not be", (z; —&;)*+ (y; — §;)*. The distance between
2Notice that ranging estimates can be obtained from any pulse whose sheqéUIVaIence classes should be used instead. Since the FIM for

a . . . .
is known at the receiver. This includes data carrying packets that have b@eﬁphor'free localization is singular [10], the bound will be
successfully decoded as long as we know the time they were supposed to ldeweloped using the tools provided in [22].
been transmitted. In a wireless sensor network, we are thus not restricted to
use a dedicated radio for ranging.
3Suppose that we are estimating the propagation time by looking for a pe l|<
in a matched filter. By high SNR we mean that the peak we find is in thz . ESTIMATION BOUNDS FOR ANCHORED LOCALIZATION
near neighborhood of the true peak. At low SNR, it is possible to become
confused due to false peaks arising entirely from the noise. The Cranér-Rao bound (CRB) can be derived from the FIM.

C. Models of localization



A. The anchored localization FIM The Log-likelihood is In(p(djzM,yM) = C —
In [19], [20], [21], expressions for the localization FIM wereZKj,jeadj( ) w and so:
derived. The derivations are repeated below for completeness
and furthermore, we observe that the FIM for localization 02 In(p(d|z}M, yM))
is a function of the angles between nodes and anchors. Abi-12ier = E( D2 )
illustrated in Fig.2, the angle;; € [0,27) from nodei to j Z 1 ( T — e
is defined as: = 2 2 2
Tj— X Tj— X jead;(i) i Vi — i)+ (y; — yi)
cos(a;) = E s = 200
V(@ =)+ (y; — i) di; . cos® (aij)
Yi — Yi Yi —Yi ol
Sin(aij) = \/( j)g n ( )2 — Jd (6) j€adj(i) 1]
Tj— T i — Yi ij - .
! Vi~ ! and similarly for other entries of. O
X : o
\ B. Properties of the anchored localization CRB
i Given the FIM, the CRB for any unbiased estimatoP:is
(@5, ;) . _
g E((z; — wz)2) > J21’£172i—1
E((i =) = Tyl
Corollary 1: (The FIM is invariant under zooming and
i ij translation)J ({(z;,v:)}) = J({(az; +c,ay; +d)}) for a # 0.
(w4, ;) Proof: : The anglesy;; and noiser;; are unchanged and
v so the result follows immediately. |

Corollary 2: The CRB for a single node is invariant un-
Fig. 2. a; illustrated der rotation and reflection: Lel = J({(zs,%)}), B =
({R(m“yl)}), where R is a 2 x 2 matrix, with RRT =

1 .
Let z;,5; be the2i — 1'th and 2'th parameters to be 12x2: Then Azl | oy + Ayly; = Byl gy + Bailas Vi =

estimated respectively,=1,2,..., M. The FIM iSJoprx2ns- 1,2...,M. . o :
Theorem 1:(FIM for Anchored Localization) Vi = Proof: : Going through the derivation of the FIM, we find
1. M that B = QAQT, where@ is a2M x 2M matrix with the
Y cos? (@) following form:
Jric1zi1 = Z o2 8 () Q2i-1,2i—1 Q2i—1,2i
Jeadi) Y QZi 271'71 QZi 272' =R (12)
J B sin“ () 8 ’ '
22 = Z o2 (8)  with all other entries of) being0. ObviouslyQ”Q = QQT =
j€adj(i) T Ionison and soB~1 = QA~1QT. Write
COS| ;4 ) SIN( 0545
Joi—1,2i = J2i i1 = Z W 9 AT AL
cadi(i 03; A(’L) — 21:11,2171 21:11,21 (13)
jeadi(3) A2i,2i—1 A27‘,,2i
For nondiagonal entrieg # i, if j € adj(i):
1 and similarly for B(i). Then B(i) = RA(i)RT. Since
J2i71’2j71 = szfl,gifl = *F cos2(aij) (10) TT(XY) = TT(YX) we hav B 1_1 2i—1 + 321122 =
. Tr(B(i)) = Tr(RA( JRT) = Tr(RTRA(i)) = Tr(A(i)) =
Jojoj = Jojoi= 7 sin® (a5 (11 Ayl 2i-1 1 Al 26" i
ij
Joic125 = Joj2i-1 =21 = Joj-1.2 L
amh 2‘7’12 ' il . 21 C. A lower bound to the anchored localization CRB
- _Esm(a”)cos(a”) T 202 Sm(2a”) In order to invert the FIM and thereby evaluate the CRB,
If j ¢ adj(i), the entfies are all zero we need to take the geometry of the whole sensor network
Proof: : We have the conditional pif into account. In this section, we derive a performance boupd
o, for node! that depends only on the local geometry around it.
7“2{,%2‘“) This has the potential to be valuable to “local” algorithms that
pld|zM, yM) = H e v try to do localization without performing all the computations
i<j,j€adj(i) 2107 in one center.

First we review a lemma for estimation variance:

Ad = {cii,j\z‘ < J,j € adj(i)} is the observation vector.
=M = (21,22,...,x0r), similarly for y}M. We write (A~1); ; as A, for a non-singular matrix4.



Lemma 1:(Submatrix bound) Let the row vectat

(01,05,...,08) € RN, YM,1 < M < N, write §* =
(ON—pr1+1,---,0N), then for any unbiased estimator fér
E((0" — 69T (0" —6+)) > C~* (14)
WhereC'is the (N — M) x (N — M) matrix :
AB
50 = (%) (15)

(cos(2ay), sin(2ay)) is the origin. A special case is when the
angles2a;’s are uniformly distributed 0, 27).

Above, we usedone-hop geometric information around
nodei to get a lower bound on the CRB. This bound can
be interpreted as the CRB given perfect knowledge of the
positions ofall other node% We can use more information to
tighten the bound. The lower bound using 2-hop information
is the CRB given the positions dll nodesj, j ¢ adj(i),
and similarly for multiple-hops. The larger the local region

where J(6) is the non-singular, and hence positive definitdVe use to calculate the CRB, the tighter it is. We define the

FIM for 6.
Proof: : Write the inverse of/(0) as :

J(0)"' = ( AL ) (16)

BIT Cl

J(9) is positive definite, then Theorem 5 in the appendi

guarantees:

c'>ct 17)

The CRB theorem then giveB((6* — )T (6* — 6*)) >
C'>Cc L O

Notice that for any subset oM nodes, we can always
reorder them to get indice¥ — M + 1,..., N. By directly
applying Lemma 1 we get:

Theorem 2:(A lower bound on the CRB)
Write 0; = (2;,v;)7 and write

1 J(0)21-1,21-1 J(0)21-1,21
o? J(0)2l72l—1 J(9)2l,2l

Then for any unbiased estimatér E((4;, — 6,)(6, — 6,)T) >
Jh
Tlhis means we can give a bound on the estimatiofwafy;)
using only the local geometry around sengor

Corollary 3: J; only depends or(x;,y;) and (z;,y;),? €
adj (1)

Proof: : J; in Eqn.7 only depends ofy;,0;;), j €

adj(l). These only depend ofx;,y;) and (z;, y;). O

Jy = (18)

CRB on such an estimation problem as tNe— hop bound
for that particular node. Obviously, th€ — hop bound is non-
decreasing withV, and theoo — hop bound is the same as
the CRB for the original estimation problem.

In our simulation, we hav€00 nodes andl0 anchors all
yniformly randomly distributed inside the unit circlg, €
adj(i), if and only if d; ; < 0.3. In Figure. 3, we plot the
bounds for20 randomly chosen nodes.
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The nodes are indexed with decreasingj()

Assume that the ranging errors are iid Gaussian with ze An upper bound to the anchored localization CRB
mean and common varianee® and define the normalized The CRB in Theorem 1 gives us the best performance an

FIM K = ¢2%J. This is similar to the Geometric Dilution
of Precision (GDOP) in radar[24] sincE is dimensionless
and only depends on the angles;'s. Let W = |adj(l)|
with sensorse adj(l) beingi(1),...,I(k),...,I{(W). Using
elementary trigonometry and writingy, = o)

1 w + kazl cos(2ay) ZZ‘/:l sin(2ay)
- 2 2
Ji = o2 ZZ‘/:l sin(2ay) W ka:l cos(2ay,)
2 2 2
The sum of the estimation variance
E((mi— @)+ i —9)°) = J7 I =
AW o2 ﬁ
W2 — (XL cos(2ak))? — (X, sin(204,))2 — W
(19)

with equality Whenz:kW=1 sin(2ay) = 0, Z,‘:Vzl cos(2ay) =
0. This happens

unbiased estimator can achieve giwhinformation from the
sensor network, including the positions of all anchors and
all the available ranging informatiod}yj. This bounds the
performance of a centralized localization algorithm where a
central computer first collects all the information and then
estimate the positions of the nodes.

In a sensor network, distributed localization is often pre-
ferred. In this “local” estimation problem only a subset of the
anchorsF; C F and a neighborhood of the nodes S; C S
may be taken into account. The CRB(z;) and V(y;) of
this local estimation problem computed from t&;| x 2|.5;]

FIM is an upper bound on the CRB for the original problem
because strictly less information is used for estimatfidn.
this section, the two bounds are compared through simulation.

S1t's equivalent to know the positions of all the neighbors.
“In [19], a rigorous proof is given for the equivalent proposition that the
localization CRB for a node is non-increasing as more nodes or anchors are

if the centroid of the unit vectorstroduced into the sensor network.
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The wireless sensor network is shown in Fig.4. Anchors
are on the integer lattice points in7a< 7 square region. There af °
are 20 nodes with unknown positions uniformly randomly
distributed inside each grid square. Sensoend j can see
each other only if they are separated by a distance less tha
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Fig. 4. The setup of the sensor network 2
Anchors are shown as squares, nodes are shown as dots, nodes inside the o2 1
central grid are shown as black dots.
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Size of the sensor network
i (= V% Y = . . _ .
We compute the normalized CRBV,(— Vz + Vz »! = Fig. 6. Circle: CRB using information from local network.

1,2,...,20) for localization of the nodes inside the centraline: CRB using whole network.

grid A1A;A3A, in 4 different cases corresponding to in-

formation from within the squaresi; A; A3 Ay, B1B2B3By,

C10>C3C4, and the whole sensor network. As shown in Fig.5,2  _ o2d? ., whereo? is the noise variance whet = 1.8

Vi(4) = Vi(B) > Vi(C) = Vi(ALL),i = 1,2,...,20. We Frthermore, we assume a range estimate is available between

observe thatV;(C) (squares in Fig.5) is extremely close 10y sensors, though it may be bad if they are far apart.

Vi(ALL) (the curve in Fig.5). More surprisingly, we observénterference is ignored. This is reasonable only when there

that V;(B) is much smaller tharv;(A). _ is no bandwidth constraint for the system as a whole, or if the
To explore further, we gradually increase the size of thgyta rates of communication are so low that all nodes can use

square region and compute the average CRBAfp, A3 A, g naling orthogonal to each other.

As shown in Fig.6, the average CRB decreases as the netwoﬁg)eﬁneK — »2J to be the normalized FIM. Just as in the

size increases. After first dropping significantly, the UppP&hse wherer = 0, translations of the whole sensor network
bound levels off once we have included all the nodes direci, not change the FIM. Rotation does not change the CRB on
adjacent to our neighborhood. This bodes well for doingny nodeK,,', .., + K;%.. However, zooming does have
distributed localization — distant anchors and ranging infog, effect onzt_hé Z,:_”\,L net

mation do not significantly improve the estimation accuracy. corollary 4: (The normalized FIMK is scaled under

zooming) If the propagation model ig*,a > 0,and the

E. CRB under different propagation models whole sensor network is zoomed by a zooming factor 0.

In the previous discussion, the ranging information wa& ({c(zi,4:)}) = &K ({(zi,y:)}), ¢ # 0.

assumed to be corrupted by iid Gaussian errors. The ranging Proof: : Zooming does not change the angles; be-
CRB, Eqn.1, implies that the varianee?,; of the additive tween sensors. If the zooming factordsthen the decaying
noise on the distance measurement should depend on the _ ,
distanced; ; between two nodes. j, because the received, . oicr we had a hybrid model with = 0 locally anda = co at a
IS i,] E great distance since the range is only available for sensor pgiif d; ; <

wireless signald(t) attenuates as a function df We assume R,;.ipie-



factor changes to(cd; ;)* = c*d};, Substitute the new [1l. ESTIMATION BOUNDS FORANCHOR-FREE

decaying factors into the FIM as in Theorem 1, we get: LOCALIZATION

K({c(zi,9:)}) = & K({(2i,9:)})- 00 For anchor-free localization, only the inter-node distance
The CRBUZKZ  changes proportional td, if the whole measurements are available. The nature of anchor-free local-
sensor network is zoomed up by a factor ization is very different from anchored localization, in that the
Next, we have a simulation in which we fix the node densitgbsolute positions of the nodes cannot be determined. We first
and examine the average CRB for differefst as we vary the review the singularity of the FIM using the treatment from
size of the sensor network. The sensor network is the sameg 8.
in Fig.4 and the sizes are takenlak 1,3 x 3,...,13 x 13. Lemma 2:(Rank of the FIM) Letd be the observation
We calculate the average CRB inside the central square amdtor, and) be then dimensional parameter to be estimated.
plot the average estimation boundiifilog;, scale in Fig.7. Write the log likelihood function a$(d|¢) = In(p(d|6)). The
The average CRB decreases as the size of the sersmk of the FIMJ isn—Fk, k > 0, if and only if the expectation
network increases. This is expected since there is more infof-the square of directional derivative Kil|0) at 6 is zero for
mation available and no interference by assumption. Asymp-ndependent vectors,, ..., b, € R".
totically, the CRB decreases at a faster rate for smalkince Proof: : The directional derivative of(d|9) at 6, along
the noise variance increases more slowly with range. directionb; is : 7(b;) = (01/961,0l/003, . ..,0l]/00,)b;.

E(7(b:)?)
= E(b} (01/861, . ..,01/00,,)T (81)00,...,01]00,)b;)
= bl Jb; (20)

-2f ' . If k independent vectorts, . .., b, makeb! Jb; = 0, the rank
of J isn — k, sinceJ is ann x n symmetric matrix. O

x The FIM for anchor-free localization is given in Theorem

« 1, just with no anchors. With the above lemma, we can prove
° ' that the rank of this FIM is deficient by at least This is

: intuitively clear since there ar& degrees of freedom coming
-6l o from rotation and translation.
Theorem 3:For the anchor-free localization problem, with
i © M nodes, the FIMJ(6) is of rank2M — 3

Proof: : The log-likelihood function of this estimation

problem is :

1(d]o
Fig. 7. Average CRB in the central grid for differemt (d]6) - L . >
Circle:a = 1, Dot: a = 2, Cross:a = 3 =In(p({di;,1 <4, < M,j € adj(i)}

{0y @ = 232 + (s — )21 < < M, j € adj(i)})

Average Estimation Bounds
(10l0g10 scale, after alignment)

L L L L L L L L L o
1 15 2 25 3 35 4 4.5 5 55 6

Size of the sensor network

Heuristically, the localization accuracy for nodé mainly R 5 5
determined by the total energy received by it. Suppose thatthe = Z B 1n(p(did|\/($i —a3)? + (yi = y5)%))
distance between nodessr,,, and the nodes are uniformly 1<i,j<M,j€adj(i)
distributed. We approximate the total received enefgy The last equality comes from the independence of the mea-
coming from sensors within distande as: surement errors. The directional derivative of each term

in the sum is0 along the vectorsbl,b27b3 € RM,

27 R — T 7 i
_ by = (1,0,1,0,...,1,0)7,by = (0,1,0,1,...,0,1)7, by =

_ _ l—a 1 y Uy Ly, Uy s Ly 5 U2 y Ly Uy Ly 3
Pr = ﬁ/ /T ~“pdpdd = Qﬁﬂ/rm prtdp (Y1, =21, Y2, — T2, . -, yar, —xar) T Whereb, andb2 span the
Qﬁw (R?= — 270} if q 22 2-D space inR*M corresponding to translations arg is

— m . . .
{ 257r(1n( ) —In(ry)) if a=2. trgtfag:tantaneous direction when the whole sensor nethorks

Since the FIM is not full rank, we cannot apply the standard
CRB argument becausg™! does not exist. Instead, the CRB
the Moore-Penrose pseudo-inverse[22]

Whena < 2, P behaves likeR?~¢ which grows unboundedly
as the network grows and similarly far = 2 where Py
behaves likeln(R). In such non-physical cases, it would bdS
possible to save each node’s transmitter power by going to a

larger network and then turning down the transmit power #f\- What does/’ mean: the total estimation bound

such a way as to keep the position accuracy fiadt. in the When the FIM is singular, we cannot properly define
physically relevant case af > 2, P converges to-=5 2ﬁ” r2-2 the parameter estimation problem &¥*. However, we can

and local measurements should be good enotipis heunstlc estimate the parameters in the local subspace spanned by
explanation is a qualitative fit with simulations as illustratedll £ orthonormal eigenvectors,, ..., v, corresponding non-

in Fig.7. zero eigenvalues of. In that subspace, the FIND is full



1.0

rank. Write V- = (vy,...,v), V is ann x k matrix and

VTV = I, thenQ = VTJV, andQ~' = VT JtV, thus J' ]
is the intrinsic CRB matrix for the estimation problem. The
total estimation bound for the estimation problem in the oer )

dimensional subspace Er(Q~!), andTr(Q~') = Tr(JT)
by elementary matrix theory.

Unlike the anchored case, we cannot claim the estimation osr
accuracy of a single node to be bounded bhy:

0.7

E((#; — xl)z) + E((9i — yi)2) > Jgi—1,2i—1 + J2Ti,2i (21) o4r

o3 45 7

since there always exists a translation of the entire network to
make the estimation of nodeperfectly accurate. However, the 0zl |
total estimation bound contrains the performance of anchor-
free localization since the trace is invaridnt. o1f - ]

Definition 1: Total estimation bound/,.,;(J) on anchor- e —

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

free Iocalizati%l?0 x
Viotar(J) - Z?Il(‘];i—mi—l + Jg?ﬂ?i) - TT(JT) . Fig. 8. The contour shows the total estimation bound(rog;,, scale for
By the definition we know thai}..; (k) is invariant under the 3rd node afz, y).
rotation, translation and zooming.

Theorem 4:(Total estimation boundV;,:.;(J) on an s : : : 27
anchor-free localization problem)
Viotat(J) = 32072 L where\;’s are non-zero eigenvalues 2 1
of J ' ]

Proof: The correctness follows the fact that the eigenval-

ues of JT are {-, {-,..., 5-1—,0,0,0. And so Tr(JT) = ] 25
D O

1) Total estimation bound on 3 nodes anchor-free localiza-
tion: Using Theorem 4, we can give the total lower bound ” ] 235
on any geometric setup of an anchor-free localization. The 23
simplest nontrivial case is when there are oBlpoints. We 5 1
fix two points at(0, 0), (0,1). We plot the contour of the total
estimation bound as a function of the position of 8vd node ) >
€ [0,1] x [0,1]. © ‘”’

The result shows that the total estimation bound is relate@_ 9. The total estimation bound, the 3rd node iS((hf),y) along the
to the biggest angle of the triangle. The larger that angle #tted line in Fig.8.
the larger the total estimation bound is. From Fig.8, we find
that the minimum total estimation bound is achieved when the
triangle is equilateral, where the 3rd node ig@6, @) Fig.9 rectangle becomes less and less sqliatéowever, once the
(b) shows what is happening around the minimum. number of nodes had gotten large enough, the total estimation

2) Total estimation bound for different network shapes:error bound did not change with more nodes. The error was
The shape of the sensor network effects the total estimati@duced per-node in a way that simply distributed the same
bound. We illustrate this by a simulation with/ sensors total error over a larger number of nodes.
randomly and uniformly distributed in a region with all the
pairwise distances measured. We plot the average normaligdwhy not set a node db,0) and another node on the x
total estimation bound 030 independent experiments. axis

Fig.10 reflects a rectangular region with dimensibn x It is tempting to eliminate the singularity of the

Ly, Ly > L. Since the zooming does not change the totgh\) py just setting some parameters. If we fix node
estimation bound, only the rati® = f—; matters and it turns 1 at position (z1,51), node 2 with y-coordinate 0
out that the normalized CRB increasesiagcreases, orastheit is equivalent tZJ doing the estimation in the sub-

25
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space through poinfzy,y1,...,za,ya) perpendicular to

9A geometric interpretation of this total estimation is as follows. Imagine
that the estimation is done in then — 3 dimensional subspace which 11jn [25], we also studied the total estimation bound for an annular region.
is orthogonal to the3 dimensional space spanned by, bs,bs. Then the Let R = :"7” be the ratio of the radius of the inner circle over the radius
expectation of the square of the error vector will be upper bounddd6y ™).  of the outér ‘Gircle, we observe that the total estimation bound decreases as

1%For anchored localization] is non-singular. Thus/~! = J'. It's R increases and again the total estimation bound is roughly constant with
immediate from the definition of the CRB th3t, E((¢; — z;)? + (i — respect to the number of nodes. The best case is having the nodes along the
vi)?) < Tr(J~1) = Tr(Jt). circumference of a circle!



D. Total estimation bound under different propagation models

It can be easily seen that just as in the anchored localization,
J is invariant under translation aid,;.;(.J) is invariant under
rotation as well. Just as in anchored localization, the total
estimation bound/,;;(J) changes proportional to*, if the
whole sensor network is zoomed up by a factor
In simulation, we study the affect of the size of the sensor
% network on the average estimation bound in different propa-
gation models, i.e. for different’s using the same setup as
e Fig.4.

R=32

10l0g10(V)
w
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6 T . I . I !
10 20 30 40 70 80 90 100

50 60
Number of Nodes

Fig. 10. The normalized total estimation lower boul@ number of 2l ]
nodes. Rectangular regiqiR = %)

& = (1,0,0,0,...,00T,¢co = (0,1,0,0,...,0)7,d =
(0,0,1,0,...,0)T. In general, the subspacg gengrated by
c1,Ca,C3 IS not the same as that generated thyb,, b3 and

Average Estimation Bound
(10l0g10 scale, after alignment)
x

so the choice of which nodes we choose to fix can impact the ol ° i
bounds! o
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C. Comparison of anchored and anchor-free localization Sie o the sensornenork

Sometimes a bad geometric setup of anchors results in /g 12. The average normalized total estimation lower boliiftisize of
anchored estimation, while the anchor-free estimation is stffp sensor network for different
.. . ircle:a = 1, Dot: @ = 2, Cross:a = 3

good! As such, it is not useful to view the anchor-free case as
an information-limited version of the anchored case. After all,
in the anchored case, we also have a more challenging goal: ta\s shown in Fig.12, we observe that the average estimation
get the absolute positions correct, not just up to equivalency.dound decreases as the size of the sensor network increases
Fig.11, we have a sensor network wittanchors very close to with fixed node density. Just as in the anchored case shown
each other, the total estimation bound for anchored localizatign Fig.7, the estimation accuracy is mainly determined by
is 195.20, meanwhile the total estimation bound for anchotthe received power and so the heuristic explanation for the
free localization ist.26. 12 anchored case also fits the simulation results we have for the

. anchor-free case.

°8r IV. CONCLUSIONS ANDFUTURE WORK
0.6

In this paper, we studied the CRB for both anchored
04l and anchor-free localization and gave a method to compute
' the CRB in terms of the geometry of the sensor network.
For anchored localization, we derived both lower and upper
0. bounds on the CRB which are determined by only local
geometry. These showed that we can use local geometry
. . to predict the accuracy of the position estimation and that
04l ) bodes well for distributed algorithms. The implications of
our results on sensor network design is that accurate position
estimation requires good local geometry of the sensor network.

0.2

> Or-

oo

o8l ’ ) For anchor-free localization, the singularity of the FIM was

. ’ overcome by computing the total estimation bound instead.

1 o8 06 04 02 0 02 04 06 08 1 Finally, we considered the implications of wireless signal
X propagations and found that if the signals propagate very well,

Fig. 11. A bad setup of anchors. square: anchors, dot: nodes then there are potentially significant gains by using larger

networks and doing estimation in a manner that uses this

information. However, such path-loss models are unphysical

12As a result, we suggest algorithm designers avoid fixing the globalnd SO .praCt'Cal schemes should work fine with only local
coordinate system unless they are confident on the setup of the anchors.information.



So far, we have only computed the CRB. For the desige] V. S. ChernyakFundamentals of Multisite Radar SystemGordon and

of algorithms, it would also be good to know tisensitivity Breach Science Publishers, 1998. _
f the b d to individual ob ti It might b [25] C. Changlocalization and Object-Tracking in an Ultrawideband Sensor
0 € bound 10 Individual observations. mig e very Network, Master Thesis EECS Department, UC Berkeley, May, 2004.

helpful to localization if one can identify the bottlenecks of26] K. Hoffman and R. Kunzel.inear Algebra Prentice Hall, 1992.
the problem. i.e. figure out which distance measurement could
help to increase the localization accuracy the most. With the
knowledge of the bottlenecks, it may be possible to allocate the
energy or computation in a smart way to improve localization A- Proof of Eqn.17 The lemmas and the theorem in

accuracy. Finally we don't know if we can approach the bourfi€ a@ppendix can be treated as corollaries of the results in
with distributed or centralized localizatiot? [26]. We prove all the lemmas and the theorem here for self

completeness.
Theorem 5:For a positive definiteV x N matrix J.
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WhereA = diag(dy, 02, ...0n), Wwhered; =0,i =1,2,..., N—
M and 6; = I,N — M < i < N. Obviously A —
BC~'BT is positive semi-definite. Suppos&’ ¢ RM 7 +#
0, but ZTSTUAUTS% 0. Then we haveUT Sz
(y1,92, - yn)T =7 andyn_ary1,.--yn all equal to0. Now
S# = Uy and from the fact thayy_ar+1,...yn all equal to
0, we have:

AATA)IATy = ¢. Write 2 = VT(ATA)"1ATy, then
S¥ = Uy = UANVZ = RZwhereZ # 0. This contradicts
to the fact thatS R) is full rank. a.

Similarly C — BT A=' B is positive definite, and thus both

are full rank.
Lemma 5:(C — BTA-'B)~!
BC~'BT)"'BC~' + C!
Proof: : Notice that bothA and (A — BC~!BT) are full
rank, then,

C-1BT(A

(CT'B"(A-BC™'B")"'BCT' + C7h)(C -
I+C'BYA-BCc By 'B-C'BTA™'B
~C'BY(A—-BC'BT)"'BCT'BTAT'B
I+C'BT((A-BC™'B")"t - A7!
—(A-BC'BTY"'BC'BTA™Y)B

10

we have:

A7' =B <By<Bs<..<By (28)
Proof: : Notice that an upper-left submatrix of a positive
definite matrix is still positive definite as shown in Lemma 3.
Repeatedly applying Theorem 5 gives the desired resuit.
B. A case study of a localization algorithm

anchor
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-7 Fig. 13. Setup of the sensor netwalk = 20.
+C BT ((A-BC™'BTY Y (A-BC™'BT)A™' - A™Y)B
=1 x10°
Il
Lemma 6:J~! If we write
AB _ A B N .
J: (BT O) andJ 1 = (B/T C’/> ELS* F— +
ThenC’ = (C — BYA-1B)~! " e
Proof: : Given the form of J~!, we have BB’ + ~ '

CC" = I\Nn—myx(n—m) @nd AB’ 4+ BC” = 0. From the latter osf , t Ot
equation, we getB’ = —A~!'BC’. Substitute into the first

equation to get—BTA™'BC’ + CC" = I\ny_wmyx(N—M)-

Since the dimensions of the matrices all match, we get the

desired result. O

Now we can give the proof of Theorem 5.

Proof: : ¢’ = (C — BTA=1B)~! following Lemma 6.
Then from Lemma 5, we know
(C—BTA"'B)"' = C'BT(A-BC~'BT)"'BC~'+C~ .
Thus
' - ct = o 'BT(A - Bo'BT)YlBCct =

C—1"BT(A - BC~'BT)~'BC~! The second equality fol-
lows sinceC” = C. Finally, (A — BC~!BT)~1 is positive
definite by Lemma 4. O

Definition 2: Upper-left submatrix
1 < n < m, the upper-leftn x n submatrix of anm x m
matrix A is ann x n matrix B, s.t. B(i,j) = A(i,7),V1 <
1<n,1<j<n.

Corollary 5: Monotonically increasing matrices
For a positive definiteV x N matrix matrixJ. Let 1 < n; <
ny < ... <np = N, let A be the upper-left; x n; submatrix
of A. Let, B, be the upper-left; xn; submatrix ofA;l. Then

L
10
Index of Nodes

L L L L )
12 14 16 18 20

Fig. 14. Comparison of CRB and estimation variance of a simple localization
algorithm. Solid line is the CRB, crosses are the estimation variance. Nodes
are indexed by their estimation variance.

The CRB only applies for unbiased estimators. To see why
this is important, consider the simple localization scheme
based on laceration and averaging that was proposed in [25].
To compare the CRB  with the average estimation variance
of our localization algorithm, we setup the sensor network as
follows. All the sensors are located inside the unit cirde.
anchors are located &b, 1), (%2, —1), (%3, —1). 20 nodes
with unknown positions are uniformly distributed inside the
unit circle as shown in Fig.13.

Fig.14 compares the CRB on the estimation variance with
the estimation variance for our simple localization scheme.
R.isine = 2 and the additive Gaussian errors hawve- 0.05.

The estimation variance for some nodes is smaller than the
CRB for unbiased estimators because our localization scheme
is biased.



