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Abstract—We consider the problem of choosing a block- well known [6] that the expected code length is at most
length to achieve a desired probability of error for fixed- [ (x) + 1, giving an achievable redundancy &f
n

length lossless source coding and channel coding offaite Variable-length code redundancy becomes more in-
amount of payload data. This is closely related to the issue

of redundancy. While Baron, et al in [3], [20] studied this teresting _Wh,en .the coding system d(,)es not know t_he
problem for rates in the vicinity of entropy for known Source distribution. Because there is an expectation
source distributions and in [2] for rates in the vicinity ~within (1), the redundancy of a specific code could
of capacity for known channels using central-limit-theorem depend on the source’s actual distribution and the goal
style asymptotics, we are interested in all rates founknown s 1o make the redundancy rate small for almost all

source distributions and unknown channels. By using the . e . Y n s L
universal lower bound on the source coding error exponents possible distributions. Rissanen” Minimum Description

in [5] and the similar universal lower-bound to the channel Length (MDL) theory [19], [1] and Kontoyiannis [14]
coding error exponent in [13], we derive universal upper showed that the minimum redundancy is asymptotically
bounds to the redundancy rate that arenon-asymptoticin %(|X\ — 1) logy(n) plus some lower order (in) terms.

that they are explicitly valid for all alphabet sizes, all block Since the redundancy depends on the alphabet-size,

lengths, and all target error probabilities. Because of the .. . : .
simplicity of the bounds, they also shed light on the large it is natural to consider what happens if this also scales

alphabet asymptotics for both source and channel coding. With n. This was done by Shamir for MDL and variable-
length coding in [22]. We investigate large alphabet
|. INTRODUCTION redundancy rates for fixed-length block coding for fixed-

Classical information theory results are often based dfock coding in Section 11I-D.

the assumption that the code lengths (and thus implicity Redundancy and fixed-length coding

the data payloads) aseifficiently longIn practice, block : . L )
> o First, we examine lossless source coding in two forms:
length are finite and furthermore, many applications may . . . P :
oint-to-point as illustrated in Figure 1 and with decoder
prefer to generate short rather than long data payldads., . . . g
Side-information as illustrated in Figure 2. Sources are

Hence it is important to understand the non-asymptotic - : .
behavior of coding systems, or equivalently, the gaps bf_emoryless from finite-alphabet’, with )’ being the

fween asvmototic results and non-asvmptotic realit [3|nite side-information alphabet if it is available. In both
ymp ymp y ases, a block ofi source symbols is mapped by the

[2], [20]. In this paper, this is done in the context o : " )
fixed-length block coding that is “lossless” in the sensenCOderg into mm encoded bits. The decoder is a map

- -~ D from {0,1}™ x Y™ to X if there is side-information
that a specified probability of block-error must be met'available, and from{0,1}™ to X" otherwise. The re-

A. Background: variable-length redundancy construction at the decoder is denot&d To make the

The concept of redundancy has been traditionally stulock €rror probabilityPr(xi 7 xi') smaller than some
ied for variable-length codes. For point-to-point losslediositive valuee > 0, roughly m ~ nH(x) bits are

source-coding, a code’s redundancy rate is defined adreeded [23] if there is no side-information and around
m ~ nH(x|y) bits otherwise [24].

lEp(l(x{‘)) — H(x) (1) For both problems, the 'number. of bits needed'by a
n schemeabovethe asymptotic raté is defined to be its
wherel(x}*) is the code-length. redundancy rat&®(n, e, h):
The story is trivial for the non-universal case since the m(n, e)
Shannon code has code lendth?) = [log p(z})~']. R(n,e,h) = ————h @

n
where h = H(x) for point-to-point coding and: =

This often occurs when the natural scale of data production is slo(_ﬂ(x_l)’) for coding W'_th _S|de information. _GNem’
relative to the latency requirements. finding R(n, €, h) and findingm(n, €) are equivalent.

For i.i.d. random variables from distributiop,, it is



Care has to be taken in defining the redundancy of a o)
fixed-length code that must work for a set of possible ,n» “ o
source distributions — a compound source. Whereas in X “ X i
variable-length coding it makes sense to let the bench-gorcex; ~ p, m bits reI?;%SnSslfrﬁ?:tion
mark h move along with the underlying distribution,
that is not meaningful in fixed-length coding. Instead,
h should be set to the supremum of possiblsince the Fig. 1. Lossless fixed-length source coding
spirit of universal fixed-length coding requires that the
code satisfy the< e target probability of block-error for Source
every possible source distribution in the set. xq" %{L

In [3], [20], the redundancy rate fonon-universal b(x1") “Lossless”
lossless source coding with decoder side-informatior{is ¥i) ~ Pxy m bits reconstruction
studied forX = Y = {0,1}) and the sourcex and
side-informationy connected by a binary symmetric "
channef By using the central limit theorem (CLT) on Side-information
the number of flips of the binary symmetric channel,

they showed that the redundancy rate is: Fig. 2. Lossless source coding with decoder side-information
» 27 (0)V/a(1 — q)log (%) LY
(n,e,q) = NG to un (3)pelow the channel capacity that can be communicated

_ ) ) ) while still guaranteeing an average decoding error prob-
where®~! is the inverse Gaussian error function. Th@pility < ¢ using onlyn channel uses.

CLT-based analysis is valid only for rat€% in the

neighborhood of H(x|y) and meaningful only as: R(n,e) = C — m(n, €) ()
gets large. When the joint distributian,, is unknown n

to the coding system, the authors in [3] studied thehere C' is the DMC channel capacity. In this case,
special case of linked encoders [18], where it is assumte relevant universal lower-bound on the error exponent
that the encoder knows the empirical distribution of theomes from exercise 5.23 of [13].

side informationy{*. The redundancy rate for general

. . . . . 1. A UNIVERSAL QUADRATIC LOWERBOUND ON
universal coding without linked encoders remained oper.

. . IXED-LENGTH BLOCK CODING ERROREXPONENTS

The focus in this paper is to go beyond these asymp- } )
totic result3. In place of the CLT, error exponent results Channel coding error exponents are classical (see
are employed to bound redundancy. Using our universghapter 5 of [13]) and the key feature is that Gallager's
lower bound on the lossless source coding error exp@for exponents are non-asymptotic. We review loss-
nents from [5], achievable redundancy rates are obtainlé§S source-coding exponents and then quadratic lower
for coding with/without decoder side-information. The?ounds for both them and channel coding.

resulting bounds are universal in that they only depend | ssless source coding error exponents

on the source’s (conditional) entropy rate and alphabet, e the rel Its f
not on its detailed distribution. Because the bounds are'Ve Summarize the relevant error exponent results from

valid for all n,e, they even apply when the alphabet!N® Iiteraturg [7], [11], [13]: ,
size (Section 11I-D) or required error probabiliewaries  -€mma 1:[11] Assume the decoder has access to side

along with n. In such cases, as pointed out in [3], thénformanon and the memoryless source and side infor-

CLT based analysis is not valid. mation come fronp,, . If R = =, then a random binning
Following [2], a similar story is told for discrete encoder and jointly ML decoding system, illustrated in

memoryless channel coding where there are only a ﬁnfégure 2, has an average error probability
n channel uses available and the goal is to see how many Pr(x! # x1') < 9—nEr(R) (5)
bits m can be transmitted reliably using them. Denote =

. E.(R) = R — E 6
by R(n,e) the number of payload bits per channel-use () o%?élp o(p) )

variable withPr(z = 1) = ¢ < 0.5.
3No o(-) terms are allowed since these are only meaningful in an o )
asymptotic sense. This bound holds/n > 0 — it is not asymptotic.

2So x = y @ z wherez is another independent Bernoulli random WhereEo(p) = log, (Z(Z pxy(l"’ y)“lr”)ler)
Yy x



Without decoder side informatiord;, simplifies to: ), the random coding error exponeht(R), defined in
(6), is lower bounded/R € [H(x|y),log, |X]):
Eo(p) = (1+ p)log, (Z px(w)lif’>

= kit (R—h)?if [X] >3

E.(R) > { oz, [¥])2

L(R— h)? itlxj—2 O

In Lemma 1, the random binning scheme at the
encoder is uniform and thus universal in nature [11]0 simplify notation, we use the following slightly looser
To do ML, however, the decoder needs to know theound:
joint distribution. In [7], a decoder based on minimum (R — h)?
entropy is shown to achieve the same error exponent E.(R) = W (10)

asymptotically. For the universal decoder, . . ] )
If there is no side-information, the source is fram,

Pr(x] # x7) < 2B (R)=¢(n) (7) s.t.H(x)=h and the same bound applies.
_ e o)X log, 1 The proof details are in [5]. For both cases, the
Where ¢(n) is the vanishing terW without o adratic bounds are only determined by the gap to
side-information andg(n) = 2IFIUI%n with  oniony and the size of the source alphabieCuriously,
decoder side-information. the bound (10) has no dependence on the size of the

B. Quadratic lower bounds to error exponents side-information alphabey.

1) Channel coding: Quadratic lower bounds to the !ll. UPPER BOUNDS ON THE FIXEBLENGTH BLOCK
error exponent function date back to [4] where they were CODING REDUNDANCY RATES
first introduced to prove a coding theorem for compound In this section we present the main result of the paper,
channels. The bound there was valid only Wit%inat of upper bounds on the redundancy rate for fixed-length
capacity and said that an error-exponent (here translatgstiing. In Sections Ill-A and I1I-B, upper bounds are
to base 2) of at Ieas{% was attainablefor a derived for lossless source coding both with and without
discrete memoryless channg(-|-), whereX’, ) are the decoder side-information in both the universal and non-
finite channel input and output alphabets. [15] gives @niversal contexts based on Lemmas 1 and 2. Section Ill-
substantial improvement to this bound. C then derives similar bounds for channel coding.

In exercise 5.23 of [13], an alternative quadrati
lower bound is derived. Suppose th@tis the capacity-
achieving distribution, then the random coding error The non-universal context (where the source model is

exponentES(R, Q), is lower bounded for alR < C. known to the decoder) is a a straightforward corollary
of Lemmas 1 and 2.
In(2)(C — R)?

ES(R,Q) > 8) Corollary 1: For lossless source coding with decoder
' ~ 8/e2 +4[ln [Y[]? side-information with a memoryless source, for any

We fixed a bu in the original proof and further tight- fixed block lengthn >0, and any target error prob-
ened the bound [5]. The bound (8) is universal in thgbility e € (0,1], there exits a ra_ndom COd? such
formal sense that it only depends on the size of the outgflt the redundancy rat&(n, ¢, |X[) is at most; +
alphabet and the gap to capadity — R) but not on the (log, | X])4/ “’%ﬁ as long as the decoder knows the
detailed channel statistics. joint source distribution.

2) Source coding:These same techniques also yield  Proof: From (5), we know that for rate &f,
bounds for lossless source-coding with and without . N CnE(m)
decoder side-information. Prixt # x) <275

Lemma 2:[5] For a memoryless sourceand decoder By the bound in (10), we know that
side informationy, jointly generated iid fromp,, with . )
conditional entropyH (x|y) = h on finite alphabett’ x Er(m) (% —H(xly))

w7 2 (log, [ X)?
4This bound was then used in [4] to derive a bound on the maximu - - -
probability of error over a set of channels by implicitly quantizing the!qence a sufficient condition for the error probability
set of channels into a finite number of representative channels and thgw (X]* # x{') to be smaller than the target error
adaptir_]g the standard argument of expurgation of bad messages. Wébability € is that
paper ignores this issue and just allows random codes to be used.
5This bug was also alluded to by [16], but they got around it by n(%ﬂ‘l(xly))2

proving a weaker result that was sufficient for their purposes. 2 2WeexlXD? <€

%\. Source coding with decoder side-information



By the definition of redundancy ratg(n, ) in (2) and error probability. By using the universal lower bound on
the fact thatm is an integer introduces an additionathe random coding error exponeht.(**) in Lemma 2,
redundancy of at mos%, we conclude that: we conclude that the redundancy rate is at most
R(n,e,|X], [V, h) = 5+
2logy(e71) 1

R X|)=(1 X — 11
(n, €, | X]) = (log, | X1) n +n (1) (log |X|)\/210g2(6_1)+4(|X|y|—1)log2n (13)
2
is a sufficient condition folPr(X]* # xJ*) < e. O n
Taking an asymptotic perspective, for fixed target errarhis proves the desired result. a

probability ¢, we achieve anO((log, |X|); /%) Comparing the non-universal redundancy in (11) to the
redundancy rate —- this is consistentirer® with [25] univel(s‘il‘ |g)i?—eli)rllo(lg1)), the only difference is the vanishing
and later in [3]. From the expression of the upper bourl§m == =——~—52= that comes from the union bound
on the redundancy rate in (11), it is clear that our bour@alysis [7] in the universal decoding case. In particular,
only depends on the source alphabet $i¥¢ the source the achievable redundancy for universal coding depends
block lengthn and the target error probability. on the side-information alphabet siz¥| which is not
Since this was derived using error exponent techniqu¥ case for non-universal coding. Furthermore, for fixed
and there are no(-) terms hiding anywhere, our analysisiarget error probability > 0, this is Fhe domlnant termin
holds for any target error probabilitye € (0,1]. In the redundancy_ as gets large. This term is comparable
particular, ¢ can be a function of source block lengtHo the one coming from the error probability even when
n, €(n). If the target block error probability(n) = 7 €(n) = 3,y where f(n) is a polynomial function ofu.
where f(n) is a polynomial function ofn, then the  From the above, we see that any improvement over
redundancy goes tasn goes to infinity. In contrast, if the union bound analysis for universal decoding would
¢(n) is exponentiak(n) = 2-"F in n, then by applying also improve the redundancy rate result here. In the next
Corollary 1 and noticing that the error probability isSection, atype maiching decodes used to tighten the
zero if the rate is abovéog, |X|, we know that the redundancy rate for lossless source coding without side-

redundancy rate is no larger than information.

—nFE _
R(n,2 XD = B. Lossless source coding without decoder side-
min{(log, |X|)V2E,log, |X| — H(x|y)} ~ (12) information

Just as in the previous section, by using Lemmas 1

This bound does not tend to zero agets large. ) ;
When the distribution is unknown, we can use minid"d 2. the redundancy rate for the case without side-

mum conditional empirical entropy decoding. information can easily be upper bounded by

Corollary 2: For lossless source coding with decoder 2logy(c-1) 1
side-information with a memoryless source, for any R(n,e,|X|) = (log, |X|)/ —2—= 4+ = (14)
fixed block lengthn > 0, and any target error prob- " "
ability ¢ e (0,1], there exits a random code suctwhen the source distribution is known. For universal
that the redundancy ratB(n, e, |X|,|)|,h) is at most coding when the source distribution is unknown, we have

-1
14 (log, |X|)\/21og2(e—1)+4(|:||y\_1)1og2(n) evenifthe € Upper boundz(n, e, |X]) = =+
encoder/decoder kndwhe joint distributionp,, only up oo L4 2log,(e=1) + 4(|X| — 1) logy(n)
to its conditional entropyH (x|y) < h. (log, | X1)
Proof: Follows that of Corollary 1 except that it = . ) ] .
starts with (7) and has to account for the:) term in the Which is obtained by replacing| with 1in (13).
The redundancy result can be improved by using the
6In (3), the term®—(¢) can be approximated by/log, (e~ 1) for ~ universal source coding system without side-information
small ¢, hence we claim consistency in order. depicted in Figure 3.

"This is a departure from traditional notions of universality in which . ; ;
the joint distribution is only known up to sonwualitative properties Corollary 3: For point-to-point lossless source cod-

like being memoryless, Markov, etc. Here, it is also assumed to 80, for any fixed block length, and any positive target

known in a partiallyquantitativemanner so that fixed-block coding error probability ¢, there exits a code such that the

makes sense. If the distribution was entirely unknown, then in wor :
case it would have independent side-information and a uniform sourﬁ%dundancy raté%(n, & h) Is at most
2logy(e7) | (|X] = 1)logy(n)
n n

(15)

n

distribution. Thus only a rate dbg |.X'| would suffice. As pointed out

in [5], knowing H(x|y) < h is a non-convex constraint on the joint
distribution. (logy |X1)

+2 (1)
n



C. Channel coding

1 The derivation of the universal upper bound on chan-
, ) sz nel coding redundancy rate defined in (4) is exactly
Sourcex; Random binning ML decoder — . . .

the same as that for source coding with decoder side-
information. For a random code with input distribution
@ and universal minimum mutual information decoding,
it is shown that [12] the decoding error

Distribution p

Type matchin i~
Type calculator | t(x7") d)(;Fc)oder 9, xp

—n(ES(R,Q)— 2X1IYllogs (n)
Fig. 3. Universal type matching decoding is as good as ML decoding P, <2 n(E7(R,Q) s ) (17)

A straightforward consequence of (17) and (8) is

even if both the encoder and decoder are ignorant Hat:

the underlying source distribution except knowing the

entropy rateh. R X _1 18
Proof: The encoder illustrated in Figure 3 has two , (7:’6’| LD =5+ (18)

parts. The first part is a type calculator. The output is the \/?2“(‘“ VD2 logs(e=)+2(1X]1¥]=1) log, (n)

type index of the sequencéx’). The number of types In2 | - |
is upper bounded by/!*/~1, thus the number of bits Where the redundancy rate is the number of bits per

to describe the type is at moBt|X| — 1) log,(n)]. The ch_annel ugebelow the channel capacity that can be
second part of the encoder is uniform random binning 48liably delivered.
in the previous section. The index of the bin is denote[g. Redundancy rates for coding with large alphabets
by b(«t) € {0,1}™

The decoder is d@ype matching decoderFirst we
define the set

To show the utility of our universal bounds on redun-
dancy rate for fixed-length block coding, we investigate
redundancy rates for coding with large alphabets as
S(b(zy)) = {21 : b(27) = b(a7), andi(z1') =t(z})}  inspired by [21]. For fixed target error probability> 0

The decoder picks a sequencesifb(z7)) as the esti- and fixed finite alphabet siZet| < oo, the redu_nd_a.ncy
matez?. Obviouslyz? € S(b(z7)), so if [S(b(z?))| = rateR(n,e) clearly converges t0 asn goes to |r_1f|n|ty.

1, then the decoding is going to b@! = 7. If However, if the alphabet size also grows with block
|S(b(x7))| > 1, notice that all the sequencesSiib(z7)) lengthn, the convergence is not guaranteed.

have the same type and thus the same probability undeSince our upper bounds (11) (13) (16) and (18) on
any distribution, and thus we can use any tie-breakigdundancy are valid for any target error probabitity
from a maximum-likelihood(ML) decoding rule. All (0,1], any block lengthn > 0 and alphabetst’, ) of

that remains is to show that the type-matching decod@py sizes, we can leverythingvary, be itn, € or |X].
performs at least as good as the ML decoder if they ySwe natural question is how fast can the alphabet size
the same tie-breaker. grow with block lengthn, while still not not requiring

Suppose that we make a decoding error at the typ8y more rate asymptotically. We list some sufficient
matching decoder for some source sequente i.e. conditions forR(n,e,|X],[Y[) to converge to0 asn
|S(b(z7))| > 1 and the tie breaker favors anothe@0es to infinity:
sequencé’ # z7. Then the ML decoder using the same « |X||Y| = O(n!~?) for somed > 0 for universal
tie breaker rule is going to favor the same sequetite source coding with decoder side-information
if sequences with type(x}) are the most likely ones o |X| = o(log’?2 —) for universal lossless source coding
within the same birb(z?). If this type is not the most
likely one in the bin, then the ML decoder is guaranteelh contrast|X| only needs to beo(2v™) for source
to make an error. Either way, the ML decoder wilcoding with known statistics.
make a decoding error as well. So the type matching Similarly, the redundancy penalty for channel coding
coding system achieves an error probability of at mosbnverges td) if |X||Y| = O(n!~?) for somes > 0.
2-"E-(5) by using at mostn+(]X'|—1) log,(n)+1 bits.  Previously, universal channel coding with large alphabets
Therefore, in order to achieve target error probabilitwas studied in the arbitrarily varying channel context [8].
¢, by following the same argument in Corollary 1, welhe work here suggests an alternate perspective on
conclude that the redundancy rate for universal losslesisannel coding with continuous alphabets. In particular,
source coding is at most (16). 0 it reveals that universal channel coding with continuous




alphabets is possible if the channel uncertainty modeh]

is structured so that a quantized channel’s capacity

converges to the continuous channel capacity at some,

uniform (over channels) rate with finer-and-finer quan-

tization of both inputs and outputs. Then, as long af®l

the number of quantization bins is increased so that th
product of input and output quantization bins grows sub-

linearly in the block-length, the results here immediatelyi8]

give a capacity-achieving coding theorém.

IV. CONCLUSIONS ANDOPEN PROBLEMS

For both non-universal and universal coding, uppjllio]

bounds on the redundancy rate for fixed-length blo

coding have been derived for lossless point-to-poifti]

source coding, lossless source coding with decoder side- / _ o
] Robert Gallager. A random coding bound on fixed-composition

information and channel coding. Our bounds are simple

and explicit functions of target error probability, blocki13]

length and alphabet size. Because these results

r
non-asymptotic, the large alphabet asymptotics for boflhﬁ
source coding and channel coding can also be explored

and sufficient conditions given for the redundancy to tend
to zero.

This work is a corollary of our previous work on
universal lower bounds to error exponents in [5]. As the

lower bound in [5] is loose, the resulting upper bound o[r%ﬂ
the redundancy rate is also loose. However, we observe
that it is correct in order since the order is consistefts]
with known results for special cases. 19

Or results are restricted to almost-lossless scenarios.
For lossy source coding, the redundancy rate problem(#§!
studied in the variable-length setup [9], [26]. It Woulq21]
be interesting to derive the fixed-length redundancy rate]

which is based on a universal bound for the error

exponent for lossy source coding investigated in [17]. 53
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