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Abstract— We consider the problem of choosing a block-
length to achieve a desired probability of error for fixed-
length lossless source coding and channel coding of afinite
amount of payload data. This is closely related to the issue
of redundancy. While Baron, et al in [3], [20] studied this
problem for rates in the vicinity of entropy for known
source distributions and in [2] for rates in the vicinity
of capacity for known channels using central-limit-theorem
style asymptotics, we are interested in all rates forunknown
source distributions and unknown channels. By using the
universal lower bound on the source coding error exponents
in [5] and the similar universal lower-bound to the channel
coding error exponent in [13], we derive universal upper
bounds to the redundancy rate that arenon-asymptoticin
that they are explicitly valid for all alphabet sizes, all block
lengths, and all target error probabilities. Because of the
simplicity of the bounds, they also shed light on the large
alphabet asymptotics for both source and channel coding.

I. I NTRODUCTION

Classical information theory results are often based on
the assumption that the code lengths (and thus implicitly
the data payloads) aresufficiently long. In practice, block
length are finite and furthermore, many applications may
prefer to generate short rather than long data payloads.1

Hence it is important to understand the non-asymptotic
behavior of coding systems, or equivalently, the gaps be-
tween asymptotic results and non-asymptotic reality [3],
[2], [20]. In this paper, this is done in the context of
fixed-length block coding that is “lossless” in the sense
that a specified probability of block-error must be met.

A. Background: variable-length redundancy

The concept of redundancy has been traditionally stud-
ied for variable-length codes. For point-to-point lossless
source-coding, a code’s redundancy rate is defined as

1
n

Ep(l(xn
1 ))−H(x) (1)

wherel(xn
1 ) is the code-length.

The story is trivial for the non-universal case since the
Shannon code has code lengthl(xn

1 ) = dlog p(xn
1 )−1e.

For i.i.d. random variables from distributionpx , it is

1This often occurs when the natural scale of data production is slow
relative to the latency requirements.

well known [6] that the expected code length is at most
nH(x) + 1, giving an achievable redundancy of1

n .
Variable-length code redundancy becomes more in-

teresting when the coding system does not know the
source distribution. Because there is an expectation
within (1), the redundancy of a specific code could
depend on the source’s actual distribution and the goal
is to make the redundancy rate small for almost all
possible distributions. Rissanen’ Minimum Description
Length (MDL) theory [19], [1] and Kontoyiannis [14]
showed that the minimum redundancy is asymptotically
1
2 (|X | − 1) log2(n) plus some lower order (inn) terms.

Since the redundancy depends on the alphabet-size,
it is natural to consider what happens if this also scales
with n. This was done by Shamir for MDL and variable-
length coding in [22]. We investigate large alphabet
redundancy rates for fixed-length block coding for fixed-
block coding in Section III-D.

B. Redundancy and fixed-length coding

First, we examine lossless source coding in two forms:
point-to-point as illustrated in Figure 1 and with decoder
side-information as illustrated in Figure 2. Sources are
memoryless from finite-alphabetX , with Y being the
finite side-information alphabet if it is available. In both
cases, a block ofn source symbols is mapped by the
encoderE into m encoded bits. The decoder is a map
D from {0, 1}m×Yn to Xn if there is side-information
available, and from{0, 1}m to Xn otherwise. The re-
construction at the decoder is denotedx̂n

1 . To make the
block error probabilityPr(xn

1 6= x̂n
1 ) smaller than some

positive valueε > 0, roughly m ∼ nH(x) bits are
needed [23] if there is no side-information and around
m ∼ nH(x |y) bits otherwise [24].

For both problems, the number of bits needed by a
schemeabovethe asymptotic rateh is defined to be its
redundancy rateR(n, ε, h):

R(n, ε, h) =
m(n, ε)

n
− h (2)

where h = H(x) for point-to-point coding andh =
H(x |y) for coding with side information. Givenh,
findingR(n, ε, h) and findingm(n, ε) are equivalent.



Care has to be taken in defining the redundancy of a
fixed-length code that must work for a set of possible
source distributions — a compound source. Whereas in
variable-length coding it makes sense to let the bench-
mark h move along with the underlying distribution,
that is not meaningful in fixed-length coding. Instead,
h should be set to the supremum of possibleh since the
spirit of universal fixed-length coding requires that the
code satisfy the≤ ε target probability of block-error for
every possible source distribution in the set.

In [3], [20], the redundancy rate fornon-universal
lossless source coding with decoder side-information is
studied forX = Y = {0, 1}) and the sourcex and
side-informationy connected by a binary symmetric
channel.2 By using the central limit theorem (CLT) on
the number of flips of the binary symmetric channel,
they showed that the redundancy rate is:

R(n, ε, q) =
Φ−1(ε)

√
q(1− q) log( 1−q

q )√
n

+ o

(
1√
n

)
(3)

whereΦ−1 is the inverse Gaussian error function. The
CLT-based analysis is valid only for ratesmn in the
neighborhood ofH(x |y) and meaningful only asn
gets large. When the joint distributionpxy is unknown
to the coding system, the authors in [3] studied the
special case of linked encoders [18], where it is assumed
that the encoder knows the empirical distribution of the
side informationyn

1 . The redundancy rate for general
universal coding without linked encoders remained open.

The focus in this paper is to go beyond these asymp-
totic results3. In place of the CLT, error exponent results
are employed to bound redundancy. Using our universal
lower bound on the lossless source coding error expo-
nents from [5], achievable redundancy rates are obtained
for coding with/without decoder side-information. The
resulting bounds are universal in that they only depend
on the source’s (conditional) entropy rate and alphabet,
not on its detailed distribution. Because the bounds are
valid for all n, ε, they even apply when the alphabet-
size (Section III-D) or required error probabilityε varies
along with n. In such cases, as pointed out in [3], the
CLT based analysis is not valid.

Following [2], a similar story is told for discrete
memoryless channel coding where there are only a finite
n channel uses available and the goal is to see how many
bits m can be transmitted reliably using them. Denote
by R(n, ε) the number of payload bits per channel-use

2So x = y ⊕ z wherez is another independent Bernoulli random
variable withPr(z = 1) = q < 0.5.

3No o(·) terms are allowed since these are only meaningful in an
asymptotic sense.
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Fig. 2. Lossless source coding with decoder side-information

below the channel capacity that can be communicated
while still guaranteeing an average decoding error prob-
ability ≤ ε using onlyn channel uses.

R(n, ε) = C − m(n, ε)
n

(4)

where C is the DMC channel capacity. In this case,
the relevant universal lower-bound on the error exponent
comes from exercise 5.23 of [13].

II. A U NIVERSAL QUADRATIC LOWER BOUND ON

FIXED-LENGTH BLOCK CODING ERROREXPONENTS

Channel coding error exponents are classical (see
Chapter 5 of [13]) and the key feature is that Gallager’s
error exponents are non-asymptotic. We review loss-
less source-coding exponents and then quadratic lower
bounds for both them and channel coding.

A. Lossless source coding error exponents

We summarize the relevant error exponent results from
the literature [7], [11], [13]:

Lemma 1: [11] Assume the decoder has access to side
information and the memoryless source and side infor-
mation come frompxy . If R = m

n , then a random binning
encoder and jointly ML decoding system, illustrated in
Figure 2, has an average error probability

Pr(x̂n
1 6= xn

1 ) ≤ 2−nEr(R) (5)

Er(R) = max
0≤ρ≤1

ρR− Ē0(ρ) (6)

whereĒ0(ρ) = log2

(∑
y

(
∑

x

pxy (x, y)
1

1+ρ )1+ρ

)

This bound holds∀n > 0 — it is not asymptotic.



Without decoder side information,̄E0 simplifies to:

E0(ρ) = (1 + ρ) log2

(∑

x∈X
px(x)

1
1+ρ

)

In Lemma 1, the random binning scheme at the
encoder is uniform and thus universal in nature [11].
To do ML, however, the decoder needs to know the
joint distribution. In [7], a decoder based on minimum
entropy is shown to achieve the same error exponent
asymptotically. For the universal decoder,

Pr(x̂n
1 6= xn

1 ) ≤ 2−n(Er(R)−φ(n)) (7)

Where φ(n) is the vanishing term2|X | log2 n
n without

side-information andφ(n) = 2(|X ||Y|−1) log2 n
n with

decoder side-information.

B. Quadratic lower bounds to error exponents

1) Channel coding:Quadratic lower bounds to the
error exponent function date back to [4] where they were
first introduced to prove a coding theorem for compound
channels. The bound there was valid only within1

2 nat of
capacity and said that an error-exponent (here translated
to base 2) of at least (C−R)2

16|X ||Y| ln 2 was attainable4 for a
discrete memoryless channelP (·|·), whereX ,Y are the
finite channel input and output alphabets. [15] gives a
substantial improvement to this bound.

In exercise 5.23 of [13], an alternative quadratic
lower bound is derived. Suppose thatQ is the capacity-
achieving distribution, then the random coding error
exponentEc

r(R, Q), is lower bounded for allR < C.

Ec
r(R, Q) ≥ ln(2)(C −R)2

8/e2 + 4[ln |Y|]2 (8)

We fixed a bug5 in the original proof and further tight-
ened the bound [5]. The bound (8) is universal in the
formal sense that it only depends on the size of the output
alphabet and the gap to capacity(C−R) but not on the
detailed channel statistics.

2) Source coding:These same techniques also yield
bounds for lossless source-coding with and without
decoder side-information.

Lemma 2: [5] For a memoryless sourcex and decoder
side informationy , jointly generated iid frompxy with
conditional entropyH(x |y) = h on finite alphabetX ×

4This bound was then used in [4] to derive a bound on the maximum
probability of error over a set of channels by implicitly quantizing the
set of channels into a finite number of representative channels and then
adapting the standard argument of expurgation of bad messages. This
paper ignores this issue and just allows random codes to be used.

5This bug was also alluded to by [16], but they got around it by
proving a weaker result that was sufficient for their purposes.

Y, the random coding error exponentEr(R), defined in
(6), is lower bounded∀R ∈ [H(x |y), log2 |X |):

Er(R) ≥
{

log2 e
2(log2 |X |)2 (R− h)2 if |X | ≥ 3
1
2 (R− h)2 if |X | = 2

(9)

To simplify notation, we use the following slightly looser
bound:

Er(R) ≥ (R− h)2

2(log2 |X |)2
(10)

If there is no side-information, the source is frompx ,
s.t. H(x) = h and the same bound applies.

The proof details are in [5]. For both cases, the
quadratic bounds are only determined by the gap to
entropy and the size of the source alphabetX . Curiously,
the bound (10) has no dependence on the size of the
side-information alphabetY.

III. U PPER BOUNDS ON THE FIXED-LENGTH BLOCK

CODING REDUNDANCY RATES

In this section we present the main result of the paper,
upper bounds on the redundancy rate for fixed-length
coding. In Sections III-A and III-B, upper bounds are
derived for lossless source coding both with and without
decoder side-information in both the universal and non-
universal contexts based on Lemmas 1 and 2. Section III-
C then derives similar bounds for channel coding.

A. Source coding with decoder side-information

The non-universal context (where the source model is
known to the decoder) is a a straightforward corollary
of Lemmas 1 and 2.

Corollary 1: For lossless source coding with decoder
side-information with a memoryless source, for any
fixed block lengthn > 0, and any target error prob-
ability ε ∈ (0, 1], there exits a random code such
that the redundancy rateR(n, ε, |X |) is at most 1

n +

(log2 |X |)
√

2 log2(ε
−1)

n as long as the decoder knows the
joint source distribution.

Proof: From (5), we know that for rate atmn ,

Pr(x̂n
1 6= xn

1 ) ≤ 2−nEr( m
n )

By the bound in (10), we know that

Er(
m

n
) >

(m
n −H(x |y))2

2(log2 |X |)2
Hence a sufficient condition for the error probability
Pr(x̂n

1 6= xn
1 ) to be smaller than the target error

probability ε is that

2−n
( m

n
−H(x|y))2

2(log2 |X|)2 ≤ ε



By the definition of redundancy rateR(n, ε) in (2) and
the fact thatm is an integer introduces an additional
redundancy of at most1n , we conclude that:

R(n, ε, |X |) = (log2 |X |)
√

2 log2(ε−1)
n

+
1
n

(11)

is a sufficient condition forPr(x̂n
1 6= xn

1 ) ≤ ε. ¤
Taking an asymptotic perspective, for fixed target error

probability ε, we achieve anO((log2 |X |)
√

log2 ε−1

n )
redundancy rate —- this is consistent inorder6 with [25]
and later in [3]. From the expression of the upper bound
on the redundancy rate in (11), it is clear that our bound
only depends on the source alphabet size|X |, the source
block lengthn and the target error probability.

Since this was derived using error exponent techniques
and there are noo(·) terms hiding anywhere, our analysis
holds for any target error probabilityε ∈ (0, 1]. In
particular, ε can be a function of source block length
n, ε(n). If the target block error probabilityε(n) = 1

f(n)

where f(n) is a polynomial function ofn, then the
redundancy goes to0 asn goes to infinity. In contrast, if
ε(n) is exponentialε(n) = 2−nE in n, then by applying
Corollary 1 and noticing that the error probability is
zero if the rate is abovelog2 |X |, we know that the
redundancy rate is no larger than
R(n, 2−nE , |X |) =

min{(log2 |X |)
√

2E, log2 |X | −H(x |y)} (12)

This bound does not tend to zero asn gets large.
When the distribution is unknown, we can use mini-

mum conditional empirical entropy decoding.
Corollary 2: For lossless source coding with decoder

side-information with a memoryless source, for any
fixed block lengthn > 0, and any target error prob-
ability ε ∈ (0, 1], there exits a random code such
that the redundancy rateR(n, ε, |X |, |Y|, h) is at most
1
n +(log2 |X |)

√
2 log2(ε

−1)+4(|X ||Y|−1) log2(n)
n even if the

encoder/decoder know7 the joint distributionpxy only up
to its conditional entropyH(x |y) ≤ h.

Proof: Follows that of Corollary 1 except that it
starts with (7) and has to account for theφ(n) term in the

6In (3), the termΦ−1(ε) can be approximated by
√

log2(ε−1) for
small ε, hence we claim consistency in order.

7This is a departure from traditional notions of universality in which
the joint distribution is only known up to somequalitative properties
like being memoryless, Markov, etc. Here, it is also assumed to be
known in a partiallyquantitativemanner so that fixed-block coding
makes sense. If the distribution was entirely unknown, then in worst
case it would have independent side-information and a uniform source
distribution. Thus only a rate oflog |X | would suffice. As pointed out
in [5], knowing H(x |y) ≤ h is a non-convex constraint on the joint
distribution.

error probability. By using the universal lower bound on
the random coding error exponentEr(m

n ) in Lemma 2,
we conclude that the redundancy rate is at most
R(n, ε, |X |, |Y|, h) = 1

n+

(log2 |X |)
√

2 log2(ε−1) + 4(|X ||Y| − 1) log2 n

n
(13)

This proves the desired result. ¤
Comparing the non-universal redundancy in (11) to the

universal one in (13), the only difference is the vanishing
term 4(|X ||Y|−1) log2(n)

n that comes from the union bound
analysis [7] in the universal decoding case. In particular,
the achievable redundancy for universal coding depends
on the side-information alphabet size|Y| which is not
the case for non-universal coding. Furthermore, for fixed
target error probabilityε > 0, this is the dominant term in
the redundancy asn gets large. This term is comparable
to the one coming from the error probability even when
ε(n) = 1

f(n) wheref(n) is a polynomial function ofn.
From the above, we see that any improvement over

the union bound analysis for universal decoding would
also improve the redundancy rate result here. In the next
section, atype matching decoderis used to tighten the
redundancy rate for lossless source coding without side-
information.

B. Lossless source coding without decoder side-
information

Just as in the previous section, by using Lemmas 1
and 2, the redundancy rate for the case without side-
information can easily be upper bounded by

R(n, ε, |X |) = (log2 |X |)
√

2 log2(ε−1)
n

+
1
n

(14)

when the source distribution is known. For universal
coding when the source distribution is unknown, we have
the upper boundR(n, ε, |X |) = 1

n+

(log2 |X |)
√

2 log2(ε−1) + 4(|X | − 1) log2(n)
n

(15)

which is obtained by replacing|Y| with 1 in (13).
The redundancy result can be improved by using the

universal source coding system without side-information
depicted in Figure 3.

Corollary 3: For point-to-point lossless source cod-
ing, for any fixed block lengthn, and any positive target
error probability ε, there exits a code such that the
redundancy rateR(n, ε, h) is at most

(log2 |X |)
√

2 log2(ε−1)
n

+
(|X | − 1) log2(n)

n
+

2
n

(16)
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Fig. 3. Universal type matching decoding is as good as ML decoding

even if both the encoder and decoder are ignorant of
the underlying source distribution except knowing the
entropy rateh.

Proof: The encoder illustrated in Figure 3 has two
parts. The first part is a type calculator. The output is the
type index of the sequencet(xn

1 ). The number of types
is upper bounded byn|X |−1, thus the number of bits
to describe the type is at mostd(|X | − 1) log2(n)e. The
second part of the encoder is uniform random binning as
in the previous section. The index of the bin is denoted
by b(xn

1 ) ∈ {0, 1}m

The decoder is atype matching decoder. First we
define the set

S(b(xn
1 )) = {zn

1 : b(zn
1 ) = b(xn

1 ), and t(zn
1 ) = t(xn

1 )}
The decoder picks a sequence inS(b(xn

1 )) as the esti-
matex̂n

1 . Obviouslyxn
1 ∈ S(b(xn

1 )), so if |S(b(xn
1 ))| =

1, then the decoding is going to bêxn
1 = xn

1 . If
|S(b(xn

1 ))| > 1, notice that all the sequences inS(b(xn
1 ))

have the same type and thus the same probability under
any distribution, and thus we can use any tie-breaker
from a maximum-likelihood(ML) decoding rule. All
that remains is to show that the type-matching decoder
performs at least as good as the ML decoder if they use
the same tie-breaker.

Suppose that we make a decoding error at the type
matching decoder for some source sequencexn

1 , i.e.
|S(b(xn

1 ))| > 1 and the tie breaker favors another
sequencêxn

1 6= xn
1 . Then the ML decoder using the same

tie breaker rule is going to favor the same sequencex̂n
1

if sequences with typet(xn
1 ) are the most likely ones

within the same binb(xn
1 ). If this type is not the most

likely one in the bin, then the ML decoder is guaranteed
to make an error. Either way, the ML decoder will
make a decoding error as well. So the type matching
coding system achieves an error probability of at most
2−nEr( m

n ) by using at mostm+(|X |−1) log2(n)+1 bits.
Therefore, in order to achieve target error probability
ε, by following the same argument in Corollary 1, we
conclude that the redundancy rate for universal lossless
source coding is at most (16). ¤

C. Channel coding

The derivation of the universal upper bound on chan-
nel coding redundancy rate defined in (4) is exactly
the same as that for source coding with decoder side-
information. For a random code with input distribution
Q and universal minimum mutual information decoding,
it is shown that [12] the decoding error

Pe ≤ 2−n(Ec
r(R,Q)− 2|X||Y| log2(n)

n ) (17)

A straightforward consequence of (17) and (8) is
that:

R(n, ε, |X |, |Y|) = 1
n + (18)√

8
e2 +4(ln |Y|)2

ln 2 × log2(ε
−1)+2(|X ||Y|−1) log2(n)

n

where the redundancy rate is the number of bits per
channel usebelow the channel capacity that can be
reliably delivered.

D. Redundancy rates for coding with large alphabets

To show the utility of our universal bounds on redun-
dancy rate for fixed-length block coding, we investigate
redundancy rates for coding with large alphabets as
inspired by [21]. For fixed target error probabilityε > 0
and fixed finite alphabet size|X | < ∞, the redundancy
rateR(n, ε) clearly converges to0 asn goes to infinity.
However, if the alphabet size also grows with block
lengthn, the convergence is not guaranteed.

Since our upper bounds (11) (13) (16) and (18) on
redundancy are valid for any target error probabilityε ∈
(0, 1], any block lengthn > 0 and alphabetsX ,Y of
any sizes, we can leteverythingvary, be itn, ε or |X |.
One natural question is how fast can the alphabet size
grow with block lengthn, while still not not requiring
any more rate asymptotically. We list some sufficient
conditions forR(n, ε, |X |, |Y|) to converge to0 as n
goes to infinity:

• |X ||Y| = O(n1−δ) for someδ > 0 for universal
source coding with decoder side-information

• |X | = o( n
log2 n ) for universal lossless source coding

In contrast |X | only needs to beo(2
√

n) for source
coding with known statistics.

Similarly, the redundancy penalty for channel coding
converges to0 if |X ||Y| = O(n1−δ) for someδ > 0.
Previously, universal channel coding with large alphabets
was studied in the arbitrarily varying channel context [8].
The work here suggests an alternate perspective on
channel coding with continuous alphabets. In particular,
it reveals that universal channel coding with continuous



alphabets is possible if the channel uncertainty model
is structured so that a quantized channel’s capacity
converges to the continuous channel capacity at some
uniform (over channels) rate with finer-and-finer quan-
tization of both inputs and outputs. Then, as long as
the number of quantization bins is increased so that the
product of input and output quantization bins grows sub-
linearly in the block-length, the results here immediately
give a capacity-achieving coding theorem.8

IV. CONCLUSIONS ANDOPEN PROBLEMS

For both non-universal and universal coding, upper
bounds on the redundancy rate for fixed-length block
coding have been derived for lossless point-to-point
source coding, lossless source coding with decoder side-
information and channel coding. Our bounds are simple
and explicit functions of target error probability, block
length and alphabet size. Because these results are
non-asymptotic, the large alphabet asymptotics for both
source coding and channel coding can also be explored
and sufficient conditions given for the redundancy to tend
to zero.

This work is a corollary of our previous work on
universal lower bounds to error exponents in [5]. As the
lower bound in [5] is loose, the resulting upper bound on
the redundancy rate is also loose. However, we observe
that it is correct in order since the order is consistent
with known results for special cases.

Or results are restricted to almost-lossless scenarios.
For lossy source coding, the redundancy rate problem is
studied in the variable-length setup [9], [26]. It would
be interesting to derive the fixed-length redundancy rate
which is based on a universal bound for the error
exponent for lossy source coding investigated in [17].
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