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Abstract

Discrete-time memoryless broadcast channels are an abstraction of the down-link for many centralized wireless systems. They
capture some of the issues involved with many different users wanting to simultaneously receive information from a single site.
The traditional analysis is in the context of block codes with the messages being known in advance by the encoder. Instead, we
consider a sequential setting in which each user’s message evolves in real-time as bits stream in to the encoder. In this context,
we look at the probability of error not at the block level, but at the bit-level. Furthermore, in place of block-length, we look at
the delay between when the bit arrives at the encoder and when it is decoded by the decoders.

The sequential random coding error exponent is studied and shown to be positive in the whole capacity region for degraded
broadcast channels. Furthermore, we show that this exponent can be achieved in a delay-universal or “anytime” fashion in that
the encoder does not have to specify the target delay. The choice of decoding delay is left up to the decoders which are free to
vary this on an application specific basis — the longer it is willing to wait, the lower the probability of bit error will be.

I. INTRODUCTION

This paper treats degraded broadcast channels in a sequential setting. As such, it is a sister paper to our discussion of sequential
codes for multiple-access channels [1] and to our discussion of sequential source coding in the Slepian-Wolf context.[2] The
broad considerations presented there are identical to those present here, but we repeat a brief review here for the reader’s
convenience.

In the point-to-point communication scenario, there are many types of codes. The block-coding paradigm has a semi-infinite
sequence of messages, each of which is quite large. These messages is assumed to be known to the encoders at the beginning of
the epoch, and the decoder is assumed to produce an estimate for it by the end of an epoch. The next message is considered in
the next epoch. The delay in this context is determined by the epoch size or block-length. The sequential-coding paradigm also
has a semi-infinite sequence of messages, but each of these is assumed to be quite small relative to the delays of interest. These
small messages become available to the encoder as time evolves, and are used to generate channel input symbols causally.
There is no a priori choice of an epoch or block-length. Instead, the decoder decodes estimates of the messages as time goes
on, but does so with some delay.

Convolutional and tree codes represent the most well known cases of sequential codes, though these techniques can also
be used to construct block-codes. In [3], Forney reviews how the probability of error varies with delay in the point-to-point
settings as the decoder is forced to make a bit-decision at a particular delay. The relevant exponent turns out to be the random
block-coding error exponent, and in the high-rate regime, [4] tells us that no code can achieve a higher exponent with delay.
In [5], Sahai further identifies the delay-universal or “anytime” variation on sequential codes in which the choice of the delay
is left entirely up to the decoder. In [6], anytime communication problems are shown to be intimately connected to problems
of automatic control. Because of this connection, multiuser anytime theory has the potential to help us answer architectural
questions in the design of systems — in particular, the question of whether or not delay-sensitive applications like control need
to be segregated from rate-sensitive applications.

Broadcast channels [7] and [8] are interesting for distributed wireless communication systems, and yet, the study of such
channels has focused almost entirely on the block-coding case. The capacity region and random coding error exponents for
block coding on degraded broadcast channels are explained in [9] and [10] respectively. Bounded delay decoding had not been
considered. As pointed out in [11], the capacity region is still unknown for general broadcast channels.

In this paper, we study the sequential communication problem for degraded broadcast channels and bound the random coding
error exponents for the problem. These exponents are considered in the context of delay-universal, or “anytime,” reliability.
The probability of error is required to go to zero exponentially with delay, where the delay is chosen entirely at the decoders.
As such, the results here have implications in terms of sufficient conditions for the distributed stabilization of unstable linear
systems which have a single sensor/observer but distributed actuators acting on different dimensions of the unstable system,
but communicating to the observer through a broadcast channel [12].

In Section II we will first describe the model of degraded broadcast channels and sequential channel coding. Then in
Section III-A we will derive the random coding bound on sequential coding for degraded broadcast channels. We close with
a numeric example in Section IV.



II. PROBLEM SETUP

A. Broadcast channel
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Fig. 1. Model of general broadcast channels

As shown in Fig 1, there are two independent information sources for two distinct decoders A and B. This setup in which the
two information sources are independent is denoted by (K, II) in [13]. The broadcast channel is characterized by a transition
probability matrix PY,Z|X where x ∈ X is the channel input, y ∈ Y is the channel output to decoder A, and z ∈ Z is the
channel output to decoder B. The capacity region (RA, RB) of general broadcast channels is still unknown [11].

B. Degraded Broadcast channel
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Fig. 2. Model of degraded broadcast channels and how to code over them. Since the two users can be ordered in terms of quality, we denote them 1 and 2

instead of A and B.

As shown in Fig 2, decoder 1 has a strictly better channel than decoder 2 in the sense that PY,Z|X(y, z|x) = PY |X(y|x)PZ|Y (z|y).
Thus the message for decoder 2 can be decoded by decoder 1. The information source A and B remain independent.

Theorem 1: Capacity region for the degraded broadcast channel [9],[10],[7]:The capacity region R is the convex hull of the
set of rate pairs (RA, RB), s.t. 0 ≤ RB ≤ I(Z;U), 0 ≤ RA ≤ I(X;Y |U), for some joint distribution QU (u)QX|U (x|u)PY,Z|X(y, z|x),
where the auxiliary random variable |U| ≤ min{|X |, |Y|, |Z|}.
For block coding, the decoding error probability can be arbitrarily close to 0 in the capacity region. The converse is proved
by Gallager in [10]. A statistical degraded[7] broadcast channel has the same marginal transition probabilities as a degraded
broadcast channel, thus having the same capacity region and furthermore the same communication reliability. We will focus on
the physically degraded broadcast channels in this paper, although all the results carry over directly to the statistically degraded
case.

C. Random Block Coding Error Exponents

The random block-coding error exponent of the degraded broadcast channel is studied in [10]. Consider a random ensemble
of (n, 2nRA , 2nRB ) codes where encoder has 2nRA equal-probable messages from information source A and 2nRB equal-
probable messages from information source B, all with n channel uses. The inputs (length-n codewords) to the channel for
message (iA, iB) ∈ {1, 2, . . . , 2nRA} × {1, 2, . . . , 2nRB}, −−−→xiA,iB

is chosen according to the following superposition rule.
First choose 2nRB pre-codewords (cloud centers) −→u1, . . . ,

−−−→u2nRB independently according to distribution QU , which has a
product form in the case of memoryless channels:

P (−→ui = Un
1 ) =

n
∏

j=1

QU (Uj)



The codewords themselves are independently chosen according to a conditional distribution QX|U .

P (−−−→xiA,iB
= Xn

1 ) =

n
∏

j=1

QX|U (Xj |
−→ui(j))

The decoders run ML decoding. Suppose that the two independent messages are iA and iB , Gallager showed the following
coding theorem for degraded broadcast channels[10], except that we have changed units from nats to bits:

Theorem 2: [10] Expected error probability over all messages and all channel realizations. ∀Q = (QU , QX|U ), for decoder
2:

P2(îB 6= iB) ≤ 2−nEX12B
(Q,RB)

EX12B
(Q,RB) = max

0≤ρ≤1
[−ρRB − log2

∑

z

(
∑

u

QU (u)P
1

1+ρ

X12 (z|u))1+ρ] (1)

Where PX12(z|u)) =
∑

z

∑

y QX|U (x|u)PY |X(y|x)PZ|Y (z|y) is the effective channel between pre-encoder B and decoder 2.
For decoder 1:

P1(îB 6= iB) ≤ 2−nEX1B
(Q,RB)

EX1B
(Q,RB) = max

0≤ρ≤1
[−ρRB − log2

∑

y

(
∑

u

QU (u)P
1

1+ρ

X1 (y|u))1+ρ] (2)

P1(îA 6= iA) ≤ 2−nEX1B(Q,RB) + 2−nE1A
(Q,RA)

E1A
(Q,RA) = max

0≤ρ≤1
[−ρRA − log2

∑

u

QU (u)
∑

z

(
∑

y

QX|U (x|u)P
1

1+ρ

Y |X(y|x))1+ρ] (3)

Where PX1(y|u)) =
∑

x QX|U (x|u)PY |X(y|x) is the effective channel between pre-encoder B and decoder 1.
For rate pair (RA, RB) inside the capacity region: RA < I(X : Y |U), RB < I(Z;U), the error exponents are larger than

0. As shown in [10], the proof of the above theorem closely parallels Chap.5 of [14].

D. Sequential Channel Coding

The model of sequential channel coding is as follows. For rate 1, the information bit bi ∈ {0, 1} arrives at the encoder at
time i, i = 1, 2, . . . , n, . . .. The encoder must send out an encoded symbol right away, that is only allowed to depend on the
past bits bi

1 in a causal fashion. In order to achieve any rational rate R = B
C

, we encode B information bits into C channel
uses. The decoder can choose a decision time and hence delay for a certain information bit, and the expected probability of
decoding error must be bounded by an exponential function of the delay.

Sequential encoders in this context can be thought of as labeled trees whose branching structure is determined by the desired
rate and whose labels represent the channel inputs. A random sequential code is one in which the labels are chosen to be iid
according to some distribution.

Definition 1: (B,C,QU ,U) random sequential coding scheme: For a distribution QU defined on the alphabet U , and integers
B,C ∈ N . The encoder E is a sequence of maps {Ej}, j = 1, 2, . . .. The outputs of Ej are the outputs of the encoder from
time (j − 1)C + 1 to jC. The rate of the encoder in bits per channel use is RB = B

C
.

Ej : {0, 1}jB × [0, 1]C −→ UC

Ej(b
jB
1 , λC

1 (j, bjB
1 )) = u

jC

(j−1)C+1

Where the λi(j, b
jB
1 ), i = 1, 2, .., C; bjB

1 = 0, 1, . . . , 2jB − 1; j = 1, 2, . . . are iid continuous random variables uniformly
distributed in [0, 1] and independent of the data bits. These represent the randomness used to generate the code and they are
used to select the channel inputs according to:

u(j−1)C+i = Uk, i = 1, 2, . . . , C

whenever
∑k−1

l=1 QU (Ul) < λi(j, b
jB
1 ) ≤

∑k
l=1 QU (Ul)

The random {λi(j, b
jB
1 )} are considered common randomness known at both the encoder and decoder. By the construction

of the codebook, it is clear that the encoder is casual, i.e. for any two information sequences bnB
1 and b̃mB

1 , if for some
k ≤ min(n,m) s.t. bkB

1 = b̃kB
1 , then the first kC outputs of the encoder for both information sequences are the same.

Forney showed in [3] that the point-to-point random coding error exponent defined in [14] can be achieved in the sequential
setup by forcing the decoder to give its best decision with a constrained delay. The probability of ML decoding error of the
i’th information source block at time nC is

Pen(i) ≤ K2−(n−i)CEr(R) (4)



Where K is a constant and Er(R) is the random coding bound defined in [14]. Jelinek also showed that the same bound is
achievable using a computationally tractable approximation to ML known as sequential decoding [15].

E. Superposition of Sequential Codes

For sequential coding over degraded broadcast channels, we will use a sequential superposition codes to achieve positive
anytime reliabilities inside the capacity region. To motivate what is needed, we first revisit the block coding setting.

Recall that in the block coding setting, the independence properties that appear in the proof are:

• Two codewords are independent of each other if they have different B messages, regardless of whether the A messages
are the same or not.

• Two codewords are conditionally independent of each other if they have different A messages, but the same B message.

The reason that this is called a superposition code is that it can be thought of as two distinct random codebooks that are
then combined using a special letter-by-letter superposition operation. Explicitly, let the first random codebook (for the cloud
centers) be a random rate RB block code with letters drawn over U × [0, 1] according to QU × Unif[0, 1]. Thus, in addition
to the traditional auxiliary random variable U , we have added a special continuous uniform random variable V . The second
codebook is a random rate RA block code with letters drawn over [0, 1] according to Unif[0, 1] alone. We can consider this
an auxiliary random variable W . The letter by letter combining operation is given as follows:

Xi = G(Vi + Wi mod 1, Ui) (5)

where

G(s, u) = Xk if
k−1
∑

l=1

QX|U (Xl|u) < s <

k
∑

l=1

QX|U (Xl|u)

Notice that G is exactly the function we would use to simulate something drawn from QX|U given u and the realization of
an independent uniform random variable s. This is just a matter of using the inverse conditional CDF. Moreover, notice that
Vi,Wi are both independent Unif[0, 1] random variables and so Vi + Wi mod 1 is also a Unif[0, 1] random variable with the
special property that if either of them is replaced with an independent uniform, the result will also be independent.1 Thus,
this letter by letter superposition of two different codebooks results in a broadcast codebook with the desired independence
properties. The codewords with different cloud centers are independent, while those within a given cloud are conditionally
independent.

At this point, it should be clear what needs to be done in the sequential setting. The pre-code for source B is the privileged
one, and hence is a rate RB random sequential code labeled with independent auxiliary random variables U and V for each
letter, with distributions QU and Unif[0, 1] respectively. We use another sequential pre-code for source A at rate RA that is
labeled with independent auxiliary random variables W drawn from Unif[0, 1]. These two sequential pre-codes are combined
on a letter by letter basis according to (5).

By construction, it is obvious that the encoder is casual, i.e. for any two information sequences (anA
1 , bnB

1 ) and (ãmA
1 , b̃nB

1 ),
if for some k ≤ min(n,m) s.t. (akA

1 , , bkB
1 ) = (ãkA

1 , b̃kB
1 )), then the first kC outputs of the encoder for both information

sequence are the same. Furthermore, it is easily verified that the following properties hold:

• If b̃kB
1 6= bkB

1 at any point, then all hypothesized channel inputs X̃l are pairwise independent to the true Xl for all l > kC.
• If ãkB

1 6= akB
1 at any point, then the hypothesized channel inputs X̃l are pairwise conditionally independent to the true

Xl for all l > kC, as long as we condition on Ul.

These pairwise independence and conditional pairwise independence properties will enable us to compute a bound on the
random coding anytime exponent.

F. Encoding and Decoding

The encoder and decoders work as follows. Encoder EA uses an (A,B,C,QX|U , QU ,U ,X ) random sequential superposition
scheme. This implicitly uses an (B,C,QU ×Unif[0, 1],U × [0, 1]) pre-coder EB to generate a rate RB random sequential code
book, as well as an (A,C, Unif[0, 1], [0, 1]) pre-coder E ′

A to generate a rate RA random sequential code book, which are then
superposed using (5).

At time nC, decoder 1 has access to a sequence y1, . . . ynC while decoder 2 has a sequence z1, . . . znC . Decoder 1 runs
maximum-likelihood (ML) decoding to estimate both the information sequences. The decoded information sequence pair is
denoted (ânA

1 , b̂nB
1 ) and represents the ML sequence based on the channel outputs y seen so far. Decoder 2 on the other hand,

is only interested in source B and so does ML decoding only at the level of the pre-code, and treats the superposition step
as the additional noisy memoryless channel QX|U . This parallels what Gallager did in the error exponent derivation for block
broadcast coding[10]. Mathematically:

1Of course, using continuous uniform random variables V and W is overkill. All we need is enough randomness.



b̃nB
1 = arg max

tnB
1

PX12(z
nC
1 |EB(tnB

1 )) (6)

Where PX12 is the effective channel between decoder 2 and information source B.

PX12(z|u)) =
∑

y

∑

x

QX|U (x|u)PY |X(y|x)PZ|Y (z|y)

.
Decoder 1 estimates both A and A, for information source B, it is tempting to again can treat encoder EA as a channel.

Thus:

b̂nB
1 = arg max

tnB
1

PX1(y
nC
1 |EB(tnB

1 ))

Where PX1 is the effective channel between decoder 1 and information source B. PX1(y|u)) =
∑

x QX|U (x|u)PY |X(y|x).
While for block coding we can pick the estimation b̂nB

1 as the cloud center[10] and estimate information source A around
that center, we can not do the same in the sequential setting since the error probabilities for different information bits are not
the same since they are exponential with delay. The estimates of late information bits are not at all reliable. Thus we have to
apply ML decoding on both information sources together.

(ânA
1 , b̂nB

1 ) = arg max
(snA

1 ,tnB
1 )

PY |X(ynC
1 |EA(snA

1 , tnB
1 ))

Where snA
1 ∈ {0, 1}nA, tnB

1 ∈ {0, 1}nB are two binary information sequences, and EA(snA
1 , tnB

1 ) ∈ X nC , EB(tnB
1 ) ∈ UnC

are the outputs of the encoder and the pre-code encoder. Notice that at each time, the decoders re-estimate all the information
bits. In the next section, we show that the expected probability of decoding error of the information bits decays exponentially
with delay.

III. RANDOM CODING BOUND

In this section we derive a bound on the error probability for the sequential degraded broadcast channels using the randomized
encoders in Definition 1 and the superposition strategy given earlier. It is clear that the encoders do not have any target delay
specified, and so we are interested in the error probability of an information bit given some arbitrary decoding delay. We first
state the main result of this paper in Theorem 3 and then discuss the proof.

Theorem 3: After nC channel uses, we have the ML decoded information bits b̃nB
1 at decoder 2 and (ânA

1 , b̂nB
1 ) at decoder

1. Write the error probabilities of decoding the j’th block of source B at decoder 2 and the j’th block of source A,B at
decoder 1 as Pn({b̃

(j+1)B
jB+1 6= b

(j+1)B
jB+1 }), Pn({â

(j+1)A
jA+1 6= a

(j+1)A
jA+1 }), Pn({b̂

(j+1)B
jB+1 6= b

(j+1)B
jB+1 }) respectively. Then for every

0 ≤ j ≤ n:

Pn({b̃
(j+1)B
jB+1 6= b

(j+1)B
jB+1 }) ≤ K12

−dCEX12B
(Q,RB) (7)

Pn({b̂
(j+1)B
jB+1 6= b

(j+1)B
jB+1 }) ≤ K22

−dCEX1B
(Q,RB) (8)

Pn({â
(j+1)A
jA+1 6= a

(j+1)A
jA+1 }) ≤ (K3d + K4))2

−dCE1(Q,RA,RB) (9)

Where K1,K2,K3 and K4 are constants not depending on n, j and dC = (n + 1 − j)C is the decoding delay. The first two
error exponents EX12B

(Q,RB) and EX1B
(Q,RB) are defined in Eqn(1) and Eqn(2) respectively. The third error exponent

E1(Q,RA, RB) is defined as follows:

E1(Q,RA, RB) = inf
α∈[0,1]

{ sup
ρ∈[0,1]

{α(−ρRA + E0A
(Q, ρ)) + (1 − α)(−ρ(RA + RB) + E0AB

(Q, ρ))}}

E0A
(Q, ρ) = − log2

∑

u

QU (u)
∑

y

(
∑

x

QX|U (x|u)P
1

1+ρ

Y |X(y|x))1+ρ (10)

E0AB
(Q, ρ)) = − log2

∑

y

(
∑

x

QX(x)P
1

1+ρ

Y |X(y|x))1+ρ (11)

Where Q = (QU , QX|U ) are the distributions used to construct the sequential code. These error exponents can be made positive
in the interior of the capacity region by properly choosing QU and QX|U . By letting α = 0, 1, we can easily see that the
sequential error exponents are not larger than those block coding error exponents defined in Theorem 2.



A. Error Probability for Information Source B

The situation at decoder 2 is simple. By treating the output of the sequential pre-code for source A as a sequence of iid
Uniform random variables, we can view the superposition operation as just another memoryless noisy channel. The optimal
decoder will do at least as well as a decoder that ignores the structure of pre-code A. Verifying Eqn.7 and Eqn.8 is therefore
simple since this is just a point-to-point problem in which we want to show that the random block coding error exponent is
achieved by a random sequential code with bounded delay ML decoding. See [3], [5] for detailed proofs of this. It turns out
that the pairwise independence property between the true suffix and any false suffix is all that is required since it allows the
classical Gallager analysis of the random block coding error exponent to apply to the suffix.

B. Error Probability for Information Source A

Information source A is only of interest to decoder 1. When we examine the situation from the perspective of decoder
1, we notice something interesting. The superposition operation of Eqn(5) is deterministic and works letter-by-letter. It is
tempting therefore to combine the superposition operation with the memoryless, but random, noisy channel to give us a single
memoryless multiple-access channel (MAC) connecting the outputs of the two sequential pre-codes to the channel output y.
The construction of these two pre-codes was also done in a manner that is independent of each other and so the analysis of this
part seems like it should reduce to a sequential MAC. The challenge that we face in applying the sequential MAC analysis of
[1] is that the analysis there was given in terms of discrete input alphabets and the output of our pre-codes includes real-valued
quantities. As a result, in this subsection we prove Eqn(9) directly using similar arguments.

When decoder 1 estimates information source A, it has to do the joint ML decoding by estimating information source A
and B simultaneously because of the sequential coding. After nC channel uses, depending on the position of the first wrongly
decoded block of source A and B, we have (n + 1)2 possible disjoint error events. We bound the probability of each error
event using a random coding argument and bound the probability of decoding error of a particular block by a summing up
the appropriate error probabilities.

Proposition 1: Partition of {0, 1}nA × {0, 1}nB

Given the information sequence pair (anA
1 , bnB

1 ) we can partition the set {0, 1}nA × {0, 1}nB into (n + 1)2 subsets.
For 1 ≤ j, k ≤ n

Fn(j, k, (anA
1 , bnB

1 )) =

{(snA
1 , tnB

1 ) ∈ {0, 1}nA × {0, 1}nB |s
(j−1)A
1 = a

(j−1)A
1 , s

jA

(j−1)A+1 6= a
jA

(j−1)A+1, t
(k−1)B
1 = b

(k−1)B
1 , tkB

(k−1)B+1 6= bkB
(k−1)B+1}

For 1 ≤ j ≤ n

Fn(j, n + 1, (anA
1 , bnB

1 )) = {(snA
1 , tnB

1 ) ∈ {0, 1}nA × {0, 1}nB |s
(j−1)A
1 = a

(j−1)A
1 , s

jA

(j−1)A+1 6= a
jA

(j−1)A+1, t
nB
1 = bnB

1 }

For 1 ≤ k ≤ n

Fn(n + 1, k, (anA
1 , bnB

1 )) = {(snA
1 , tnB

1 ) ∈ {0, 1}nA × {0, 1}nB |snA
1 = anA

1 t
(k−1)B
1 = b

(k−1)B
1 , tkB

(k−1)B+1 6= bkB
(k−1)B+1}

And finally Fn(n + 1, n + 1, (anA
1 , bnB

1 )) = {(anA
1 , bnB

1 )}.
We use the convention that if i1 < i2, ai1

i2
is an empty sequence. F is clearly a partition of {0, 1}nA × {0, 1}nB .

Definition 2: Error Event En(j, k, (anA
1 , bnB

1 )): En(j, k, (anA
1 , bnB

1 )) = {(ânA
1 , b̂nB

1 ) ∈ Fn(j, k, (anA
1 , bnB

1 ))}.
We call En(j, k, (anA

1 , bnB
1 )) the (j, k)’th error event that assumes that (anA

1 , bnB
1 ) was actually the information sequence

pair up to this time and captures the event that the decoded information sequence pair (ânA
1 , b̂nB

1 ) is in Fn(j, k, (anA
1 , bnB

1 )).
In words, En(j, k, (anA

1 , bnB
1 )), 1 ≤ j, k ≤ n, captures the error that the first decoding error for information source A is at

block j while the first decoding error for information source B is at block k. If the decoder does not make any decoding errors
for A, but the first decoding error for B is at the k′th block, then the error event is En(n + 1, k, (anA

1 , bnB
1 )) and similarly

for En(j, n + 1, (anA
1 , bnB

1 )) with the roles of A and B reversed. Finally the event of making no decoding errors after nC

channel uses is denoted En(n + 1, n + 1, (anA
1 , bnB

1 )).
Now we use the random coding bound argument to give an upper bound on the probability of En(j, k, (anA

1 , bnB
1 )), j ≤ k.

Lemma 1: Random coding bound on the (j, k)′th error event. Encoder EA uses an (A,B,C,QX|U , QU ,U ,X ) random
sequential coding scheme, ∀ information sequence pairs (anA

1 , bnB
1 ), 1 ≤ j ≤ k ≤ n + 1 and ∀0 ≤ ρ ≤ 1:

P
(

En(j, k,
(

anA
1 , bnB

1

)

)
)

≤ 2−(k−j)C(−ρRA+E0A
(Q,ρ))−(n−k+1)C(−ρ(RA+RB)+E0AB

(Q,ρ)) (12)

Where Q = (QU , QX|U ), E0A
(Q, ρ) and E0AB

(Q, ρ) are defined in Eqn(10) and Eqn(10) respectively.
Proof: : The proof here is similar to the derivation of the random coding bound on the block coding error probability in

[14]. The probability of En(j, k, (anA
1 , bnB

1 )) is upper bounded by the probability there exists a sequence pair (snA
1 , tnB

1 ) ∈
Fn(j, k, anA

1 , bnB
1 ), s.t.

P1(y
nC
1 |EA(snA

1 , tnB
1 )) ≥ P1(y

nC
1 |EA(anA

1 , bnB
1 ))



Write EA(anA
1 , bnB

1 ) as xnC
1 , EB(bnB

1 ) as unC
1 , EA(snA

1 , tnB
1 ) as xnC

1 and EB(tnB
1 ) as unC

1 . Since (snA
1 , tnB

1 ) ∈ Fn(j, k, anA
1 , bnB

1 ),
we have x

(j−1)C
1 = x

(j−1)C
1 , u

(k−1)C
1 = u

(k−1)C
1 . So

P
(

En(j, k,
(

anA
1 , bnB

1

)

)
)

≤ P
(

∃(snA
1 , tnB

1 ) ∈ Fn(j, k, anA
1 , bnB

1 ), s.t.P1(y
nC
1 |xnC

1 ) ≥ P1(y
nC
1 |xnC

1 )
)

=
∑

xnC
1

∑

unC
1

∑

ynC
1

QU (unC
1 )QX|U (xnC

1 |unC
1 )P1(y

nC
1 |xnC

1 )

P
(

∃(snA
1 , tnB

1 ) ∈ Fn(j, k, anA
1 , bnB

1 ), s.t.P1(y
nC
1 |xnC

1 ) ≥ P1(y
nC
1 |xnC

1 )|xnC
1 , unC

1 , ynC
1

)

(13)

First we bound the conditional probability

P (∃(snA
1 , tnB

1 ) ∈ Fn(j, k, anA
1 , bnB

1 ), s.t.P1(y
nC
1 |xnC

1 ) ≥ P1(y
nC
1 |xnC

1 )|xnC
1 , unC

1 , ynC
1 )

≤ [
∑

(snA
1 ,tnB

1 )∈Fn(j,k,anA
1 ,bnB

1 )

P (P1(y
nC
1 |xnC

1 ) ≥ P1(y
nC
1 |xnC

1 )|xnC
1 , unC

1 , ynC
1 ))]ρ,∀ρ ∈ [0, 1] (14)

∀(snA
1 , tnB

1 ) ∈ Fn(j, k, anA
1 , bnB

1 ), by noticing that x
(j−1)C
1 = x

(j−1)C
1 , u

(k−1)C
1 = u

(k−1)C
1 and the memorylessness of the

channel. We have

P1(y
nC
1 |xnC

1 ) = P1(y
(j−1)C
1 |x

(j−1)C
1 )P1(y

(k−1)C
(j−1)C+1|x

(k−1)C
(j−1)C+1)P1(y

nC
(k−1)C+1|x

nC
(k−1)C+1) (15)

Now ∀s > 0:

P (P1(y
nC
1 |xnC

1 ) ≥ P1(y
nC
1 |xnC

1 )|xnC
1 , unC

1 , ynC
1 ))

=
∑

unC
1 ,xnC

1 :P1(ynC
1 |xnC

1 )≥P1(ynC
1 |xnC

1 )

QX|U (xnC
(j−1)C+1|u

nC
(j−1)C+1)QU (unC

(k−1)C+1)

≤
∑

xnC
(j−1)C+1

,unC
(j−1)C+1

QX|U (xnC
(j−1)C+1|u

nC
(j−1)C+1)QU (unC

(k−1)C+1)
P1(y

nC
1 |xnC

1 )s

P1(ynC
1 |xnC

1 )s

=
∑

xnC
(j−1)C+1

,unC
(j−1)C+1

QX|U (xnC
(j−1)C+1|u

nC
(j−1)C+1)QU (unC

(k−1)C+1)
P1(y

nC
(j−1)C+1|x

n)C
(j−1)C+1)

s

P1(ynC
(j−1)C+1|x

nC
(j−1)C+1)

s
(16)

.
The size of Fn(j, k, anA

1 , bnB
1 ) can be bounded using

|Fn(j, k, anA
1 , bnB

1 )| ≤ 2(n−k+1)(A+B)2(k−j)A = 2(n−k+1)C(RA+RB)2(k−j)CRA = M (17)

Substituting Eqn. 16 into Eqn. 14, and using the union bound argument, we get ∀ρ ≤ 1:

P (∃(snA
1 , tnB

1 ) ∈ Fn(j, k, anA
1 , bnB

1 ), s.t.P1(y
nC
1 |xnC

1 ) ≥ P1(y
nC
1 |xnC

1 )|xnC
1 , unC

1 , ynC
1 )

≤ [M
∑

(xnC
(j−1)C+1

,unC
(j−1)C+1

)

QX|U (xnC
(j−1)C+1|u

nC
(j−1)C+1)QU (unC

(k−1)C+1)
P1(y

nC
(j−1)C+1|x

n)C
(j−1)C+1)

s

P1(ynC
(j−1)C+1|x

nC
(j−1)C+1)

s
]ρ (18)

Substituting Eqn. 18 into Eqn. 13. We have:

P
(

En(j, k,
(

anA
1 , bnB

1

)

)
)

≤
∑

xnC
(j−1)C+1

∑

unC
(j−1)C+1)

∑

ynC
(j−1)C+1

QU (unC
(j−1)C+1)QX|U (xnC

(j−1)C+1|u
nC
(j−1)C+1)P1(y

nC
(j−1)C+1|x

nC
(j−1)C+1)

[M
∑

xnC
(j−1)C+1

,unC
(j−1)C+1

QX|U (xnC
(j−1)C+1|u

nC
(j−1)C+1)QU (unC

(k−1)C+1)
P1(y

nC
(j−1)C+1|x

n)C
(j−1)C+1)

s

P1(ynC
(j−1)C+1|x

nC
(j−1)C+1)

s
]ρ

By letting s = 1
1+ρ

, and noticing the fact that x and u are dummy variables, and uk
(j−1)C+1C = uk

(j−1)C+1C.

P
(

En(j, k,
(

anA
1 , bnB

1

)

)
)

≤ Mρ
∑

ynC
(k−1)C+1

{
∑

xnC
(k−1)C+1

∑

unC
(k−1)C+1

QX|U (xnC
(k−1)C+1|u

nC
(k−1)C+1)QU (unC

(k−1)C+1)P1(y
nC
(k−1)C+1|x

nC
(k−1)C+1)

1
1+ρ }1+ρ

∑

y
(k−1)C

(j−1)C+1

∑

u
(k−1)C

(j−1)C+1)

QU (u
(k−1)C
(j−1)C+1){

∑

x
(k−1)C

(j−1)C+1

QX|U (x
(k−1)C
(j−1)C+1|u

(k−1)C
(j−1)C+1))P1(y

(k−1)C
(j−1)C+1|x

(k−1)C
(j−1)C+1)

1
1+ρ }1+ρ

= 2−(k−j)C(−ρRA+E0A
(Q,ρ))−(n−k+1)C(−ρ(RA+RB)+E0AB

(Q,ρ))



The last equality is true because QA(xi2
i1

) =
∏i=i2

i=i1
QA(xi), etc. �

By the definition of E1(Q,RA, RB) we have

P
(

En(j, k,
(

anA
1 , bnB

1

)

)
)

≤ 2−(n−j+1)CE1(Q,RA,RB) (19)

since it is the minimum over all the possible choices.
Similarly if 1 ≤ k ≤ j ≤ n + 1, we use a similar technique to bound the error probability. The only difference is

that if bkC
(k−1)B+1 6= tkC

(k−1)B+1, then xnC
(k−1)C+1 and xnC

(k−1)C+1 are independently distributed ∼ QX . Thus we have for
1 ≤ k ≤ j ≤ n + 1:

P
(

En(j, k,
(

anA
1 , bnB

1

)

)
)

≤ 2−(j−k)C(−ρRA+E0AB
(Q,ρ))−(n+1−j)C(−ρ(RA+RB)+E0AB

(Q,ρ))

≤ 2−(n−k+1)C(−ρ(RA+RB)+E0AB
(Q,ρ))

≤ 2−(n−k+1)CE1(Q,RA,RB) (20)

The last inequality is true by the definition of E1(Q,RA, RB). Now combining Eqn(19) and Eqn(20), we have:

P
(

En(j, k,
(

anA
1 , bnB

1

)

)
)

≤ 2−(n−min(j,k)+1)CE1(Q,RA,RB) (21)
Using Eqn(21), we can bound the error probabilities Pn({â

(j+1)A
jA+1 6= a

(j+1)A
jA+1 }). The probability of making a decoding error

at time nC (after nC channel uses) on the j’th information block a
(j+1)A
jA+1 is upper bounded by making a decoding error on

any block with block number not larger than j.

Pn({â
(j+1)A
jA+1 6= a

(j+1)A
jA+1 }) ≤ P (

j
⋃

i=1

{â
(i+1)A
iA+1 6= a

(i+1)A
iA+1 ) ≤

j
∑

i=1

n+1
∑

h=1

P (En(i, h, (anA
1 , bnB

1 )))

=

j
∑

i=1

j
∑

h=1

P (En(i, h, (anA
1 , bnB

1 ))) +

j
∑

i=1

n+1
∑

h=j+1

P (En(i, h, (anA
1 , bnB

1 )))

≤

j
∑

i=1

j
∑

h=1

2−(n−min(i,h)+1)CE1(Q,RA,RB) +

j
∑

i=1

n+1
∑

h=j+1

2−(n−i+1)CE1(Q,RA,RB)

≤ 2

j
∑

i=1

i
∑

h=1

2−(n−h+1)CE1(Q,RA,RB) +

j
∑

i=1

n+1
∑

h=j+1

2−(n−i+1)CE1(Q,RA,RB)

≤

j
∑

i=1

2

1 − 2−CE1(Q,RA,RB)
2−(n−i+1)CE1(Q,RA,RB) + (n + 1 − j)

j
∑

i=1

2−(n−i+1)CE1(Q,RA,RB)

≤
2

(1 − 2−CE1(Q,RA,RB))2
2−(n−j+1)CE1(Q,RA,RB) +

(n + 1 − j)

1 − 2−CE1(Q,RA,RB)
2−(n−j+1)CE1(Q,RA,RB)

= (
(n + 1 − j)

1 − 2−CE1(Q,RA,RB)
+

2

(1 − 2−CE1(Q,RA,RB))2
)2−(n−j+1)CE1(Q,RA,RB)

= (K3d + K4)2
−dCE1(Q,RA,RB) (22)

Where dC = (n + 1 − j)C is the decoding delay. �

Using the same technique we can bound the error probability for information source B if decoder 1 uses a joint ML decoding
rule. The error exponent is :

E2(Q,RA, RB) = inf
α∈[0,1]

{
1

1 − α
sup

ρ∈[0,1]

{α(−ρRA + E0A
(Q, ρ)) + (1 − α)(−ρ(RA + RB) + E0AB

(Q, ρ))}} (23)

Where E0A
(Q, ρ) and E0AB

(Q, ρ)) are defined in Eqn(10). The 1
1−α

term is from the fact that for information source B,
the dominant error event is such that the decoding for information source A makes an error before B. Decoder 1 can choose
point-to-point ML decoding or joint decoding whichever2 has the bigger error exponent to decode information source B.

2In reality, we want to just get a MAP estimate for the sources. While MAP and ML are the same in the point-to-point case, we suspect that in multiterminal
problems, there can be significant differences between MAP and ML decoding. We are actively exploring this now.



C. Discussion

In the previous two subsections, we proved the main part of Theorem 3. The theorem is true for all possible Q = (QU , QX|U ),
although for some Q the error exponents can be non-positive and hence useless. In this subsection, we sketch the proof of
why the error exponents EX12B

(Q,RB), EX1B
(Q,RB) and E1(Q,RA, RB) can be positive everywhere in the interior of the

achievable region of Theorem 2 with properly chosen Q.
First, we know ∃Q = (QU , QX|U ), s.t. 0 ≤ RA < I(X;Y |U) and 0 ≤ RB < I(Z;U). Given this, we will only sketch the

proof of why E1(Q,RA, RB) > 0, the proof for the positiveness of EX12B
(Q,RB) and EX1B

(Q,RB) are similar.

−ρ(RA + RB) + E0AB
(Q, ρ))|ρ=0 = 0

∂

∂ρ
(−ρ(RA + RB) + E0AB

(Q, ρ)))|ρ=0 = −(RA + RB) + I(X;Y ) > 0 (24)

The last inequality is true because U → X → Y → Z, thus:

RA+RB < I(X;Y |U)+I(Z;U) ≤ I(X;Y |U)+I(Y ;U) = H(Y |U)−H(Y |X,U)+H(Y )−H(Y |U) = H(Y )−H(Y |X) = I(X;Y )

Similarly we have:

−ρRA + E0A
(Q, ρ))|ρ=0 = 0

∂

∂ρ
(−ρRA + E0A

(Q, ρ))|ρ=0 = −RA − I(X;Y |U) > 0 (25)

Thus ∃ρ∗ ∈ [0, 1],s.t. −ρ∗RA + E0A
(Q, ρ∗)) and −ρ∗(RA + RB) + E0AB

(Q, ρ∗)) are both positive.

E1(Q,RA, RB) = inf
α∈[0,1]

{ sup
ρ∈[0,1]

{α(−ρRA + E0A
(Q, ρ)) + (1 − α)(−ρ(RA + RB) + E0AB

(Q, ρ))}}

≥ inf
α∈[0,1]

{α(−ρ∗RA + E0A
(Q, ρ∗)) + (1 − α)(−ρ∗(RA + RB) + E0AB

(Q, ρ∗))} > 0

This resolves the cases where no convex hull operation is needed. Otherwise, ∀(RA, RB) ∈ R, where R is the capacity
region of the degraded broadcast channel, ∃Q = (QU , QX|U ), Q′ = (QU ′ , QX|U ′) and β ∈ [0, 1], s.t

0 ≤ RA ≤ βI(X;Y |U) + (1 − β)I(X;Y |U ′)

0 ≤ RB ≤ βI(Z;U) + (1 − β)I(Z;U ′)

For the sake of simplicity, we assume β = J
K

, J,H ∈ N , J < H . Now, instead of using an (A,B,C,QX|U , QU ,U ,X )
random sequential superposition scheme, we use a more complicated (A,B,C,QX|U , QU ,U , QX|U ′ , QU ′ ,U ′,X , J,H) random
sequential superposition scheme. Basically, the (A,B,C,QX|U , QU ,U , QX|U ′ , QU ′ ,U ′,X , J,H) coding scheme is a “time
sharing” version of (A,B,C,QX|U , QU ,U ,X ) and (A,B,C,QX|U ′ , QU ′ ,U ′,X ) with the first one operating at time kHC +1
to time (kH + J)C, the second one operating at time (kH + J)C + 1 to time (k + 1)HC. Write Q = (QU , QX|U ) and
Q′ = (QU ′ , QX|U ′), it can be shown that the error exponent for decoding message A at decoder 1 can be written as:

E1(Q,Q′, β, RA, RB) = inf
α∈[0,1]

{ sup
ρ∈[0,1]

{α(−ρRA + βE0A
(Q, ρ) + (1 − β)E0A

(Q′, ρ))

+(1 − α)(−ρ(RA + RB) + βE0AB
(Q, ρ) + (1 − β)E0AB

(Q′, ρ)}} (26)

Following the proof in the first case, we have: ∃ρ∗ ∈ [0, 1],s.t. −ρ∗RA + βE0A
(Q, ρ∗) + (1 − β)E0A

(Q′, ρ∗)) and (RA +
RB) + βE0AB

(Q, ρ∗) + (1 − β)E0AB
(Q′, ρ∗) are both positive. Thus

E1(Q,Q′, β, RA, RB) = inf
α∈[0,1]

{ sup
ρ∈[0,1]

{α(−ρRA + βE0A
(Q, ρ) + (1 − β)E0A

(Q′, ρ))

+(1 − α)(−ρ(RA + RB) + βE0AB
(Q, ρ) + (1 − β)E0AB

(Q′, ρ)}}

≥ inf
α∈[0,1]

{α(−ρ∗RA + βE0A
(Q, ρ∗) + (1 − β)E0A

(Q′, ρ∗))

+(1 − α)(−ρ∗(RA + RB) + βE0AB
(Q, ρ∗) + (1 − β)E0AB

(Q′, ρ∗)} > 0 (27)

Similarly, using the (A,B,C,QX|U , QU ,U , QX|U ′ , QU ′ ,U ′,X , J,H) sequential random coding scheme, we can achieve
positive error exponents for decoding message B at both decoder 1 and 2.



IV. AN EXAMPLE

Consider a binary symmetric degraded broadcast channel consisting of two binary symmetric channels as shown in Fig. 3.
We plot E∗ in Fig. 3, where

E∗ = sup
Q=(QU ,QX|U )

{min{EX12B
(Q,RB), EX1B

(Q,RB), E1A
(Q,RA, RB)}}

Where the error exponents are defined at Eqn(7), (8) and (9). The sequential error exponents are positive in the whole capacity
region.
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Fig. 3. A degraded broadcast channel Fig. 4. Minimum sequential error exponents of the channel in Fig. 3

V. CONCLUSIONS AND FUTURE WORK

We studied sequential channel coding for degraded broadcast channels and showed how superposition coding could be done
in this setting. By applying a variation of Gallager’s random coding analysis, we achieved a positive sequential random coding
anytime exponent within the whole degraded broadcast channel rate region. This exponent measured the probability of bit-error
with bit-delay rather than block-error with block-length. Furthermore, the code was “anytime” or delay universal in that the
decoder could decide on a delay without telling the encoder what it is. The decisions become exponentially more reliable with
increasing delay, and thus all message bits are eventually known perfectly. The focus here was on showing positive anytime
exponents, and we believe that it may be possible to improve on the bounds given here.

The analyzed random coding scheme consists of a superposition of two sequential encoders designed for the degraded
broadcast channel and two ML decoders. Since ML decoding is computationally prohibitive, a practical approximate decoding
scheme is desirable. In addition, the complexity of the encoding grows as time goes on. To address this, we believe it should
be possible to accept a certain maximum tolerable delay (or equivalently, a certain small enough error probability) beyond
which we are no longer interested in correcting errors with additional waiting. This can then be realized using a (possibly
time-varying) convolutional code with a long enough constraint length. [15] might also be extended to such contexts which
would give implementable sequential decoders. Furthermore, similar sequential random coding bounds can be achieved for
other multi-terminal problems such as the two-way and interference channels.
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