Universal Quadratic Lower Bounds on Source Coding Error Exponents
Cheng Chang and Anant Sahai

Abstract—We consider the problem of block-size selec- e "Er(R) where
tion to achieve a desired probability of error for universal

source coding. While Baron, et al in [1], [9] studied this E.(R) = max pR — Ey(p) Q)
question for rates in the vicinity of entropy for known 0<p<1

distributions using central-limit-theorem techniques, we are where E -1 5\ 1+p
interested in all rates for unknown distributions and use o(p) n(zy:(%:pxy(%y) 7))

error-exponent techniques. By adapting a technique of
Gallager from the exercises of [7], we derive a universal
lower bound to the source-coding error exponent that
depends only on the alphabet size and is quadratic in the
gap to entropy.

Without decoder side information, the Gallager func-
tion £, simplifies to:

_1
Eo(p) = (14 p)In(>_ px(x) ™)
I. INTRODUCTION TEX

In [10], the lossless source coding with decoder In Theorem 1, the random binning scheme at the
S o g wi -encoder is uniform, and thus universal in nature [6].
side-information problem, as shown in Figure 1,

i .
introduced. The source and decoder side-informatiﬁowever for the ML decoding rule, the decoder needs

n . .
.. - . (fo know the statistics of the source. In [5], a universal
sequencéx]’, y*) are drawn iid from a joint distribution [5]

L m n minimum entr ing is shown
Pxy ON 2 finite alphabeft” x V. If the decoder knows tsgsatghiesgstii Zame err:)Jr es (t)r?epzt (:gc?: tgticsallS 0For
yi*, the error probabilityPr(xj* # x}"), goes ta0, as the P ymp y

code lengthn goes to infinity, for any raté? > H (p), ), the universal decoder,

where H (p),) is the conditional entropy of giveny. Pr(x] # x1") < e MEr(R)=¢(n)) 2)
Source Where ¢(n) is the vanishing terrﬁw for the case
sk —» Decoder |, X' without side-information and(n) = X2 for the
} b(x1'") ~F [ ossless” case with decoder side-information.
(Xi, ¥i) ~ Pxy Encoded bits | reconstruction
i A. Motivation and related work
no _ For fixed block source coding systems, block length
Side-information is an important parameter as it is related to both system

delay and complexity. Suppose there is a system-level
requirement that the block error probabilifyr(x]* #

. . Xi") be below some constafl. > 0. If the distributions
The performance of the coding system, i.e. how fast L
- ; are known, the minimum block length can be calculated
the error probability converges tbwith block lengthn, C
. : o . from Theorem 1. However, the exact distribution need
when the coding rate is above the minimum required

rate, is studied in [5], [6], [7]. We summarize thenOt be available to the encoder since that knowledge

) . 1s not needed to do uniform binning. Thus, a universal
relevant error exponent results from the literature in thé

. estimate to the error exponent is desirable.
following.

Theorem 1:[6] Assume a decoder with access to th A relatf—.\d problem is StUd'_Ed in [1], [9]. The_y turn
S . .§1e guestion around and ask: for non-asymptotic length
side information, where the memoryless source and si

e
information are generated from a distributipg . A ran-

source coding with side-information, what is the mini-
dom binning encoder and jointly ML decoding syste mum rate required to achieve block errBr assuming
shown in Figure 1, has error probabiliyr (xj* # x}*) <

Fig. 1. Lossless source coding with decoder side-information

Mhat the distribution is in fact known? A more quanti-
tative discussion of the relation between the problem in
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B. A universal bound on channel coding exponents To illustrate the looseness of our bounds, consider

In Exercise 5.23 [7], Gallager gives a quadratic lower¥| = 3, and distributiong,, s.t. H(p,) = h = 0.394.
bound on the random channel coding error exponenrt'ce the alphabet size is so small, we can use brute-
for a discrete memoryless channgl-|-) with output force op.tlmlzatlon to obtain the upper and lower gontours
alphabet sizeJ. If Q is the distribution that achieves®f Possible E..(R). These are plotted along with the
the channel capacity’, then the random coding erroruniversal quadratic lower boun@(R — h) = (2}(%1;2;2
exponentE¢(R, Q), defined in Theorem 5.6.4 of [7] is and the linear upper bounl — % in Figure 2.
lower bounded by the following quadratic function of W

the gap to capacityC — R) for all R < C.. = Universainearbound

— Upper contour E
—— Lower contour on Er(R)

(C _ R) 2 06 Universal quadratic bound
(3)

E(B.Q) 2 g i 2
This bound can be further tightened and we give the new
result as a corollary to Lemma 1. This bound is universal

in the sense that it only depends on the size of output
alphabet and the gap to capacity and not on the detailed
channel statistics.

Following Gallager’s techniques, we derive universal
guadratic bounds on the random source coding error
exponent with and without decoder side-information. For olels = \ \ \ \ \
both cases, the quadratic bounds are only determined by HpJ Rate R e
the gap to entropy and the size of the source alphabet
|X|. The results are summarized in Theorem 2. The progf; . Plot of the error exponents bounds for a three

details are in Section lll. letter alphabet. In order from top to bottomR — H(px),
max E,(R), min 3 Er(R), andGp(R)
Il. MAIN RESULTS AND DISCUSSION peH(p)=h P () =h

~Theorem 2:For a memoryless sourceand decoder  For ML decoding where the decoder knows the dis-
side informationy, jointly generated iid fronp,, with  tripution, the encoder can pick a block length sufficient
conditional entropyH (py|,) = h on finite alphabe®t’ x o achieve block error probabilityr(x?* # &) < P,,
Y, the random coding error exponeht (R), defined in  ynowing only the gap to entropR — » and the source
(1), is lower bounded by a quadratic functioni € g|phabet sizéX'| by choosing

[H (pxy ), In | X1):

E.(R) > Gph(R)

e
o

Q
=
T

03fF

Error Exponents

o
N
T

-

n>—-InP./G(R—h)

(R—h)? The size of the side-information alphabg¥| is not
where  Gj(R) ={ Z2M[*)* if [X] >3 (4) needed at all! If the decoder is also ignorant of the
(1;;1”’2) if |X]=2 joint distribution, theng(n) in (2) must be taken into

Because the bound depends only on the gap to entrog())/,nSIderatlonn can be chosen by solving:

we can also write it aé/(R—h). Furthermore, if there is nG(R—h) —n¢(n) > —In P,
no side-information, the source is from, s.t. H(px) =

h and the same bound applies. Sinceng(n) = |X||Y|Inn, this implies that determining

n from our bound requires the encoder to know the side-

It is interesting to note that this quadratic bound oimformation alphabet size. At low probabilities of error,
the error exponenk,.(R) has no dependence on the sizéhe dependence is relatively weak however sincéihe
of the side-information alphabéy|. is dominated by theeG(R — h) term.

_ ) In [1], it is shown that, for source coding with

A. Discussion and Examples side-information, the required rate i1(py,) +

For sources withH (p.) = h, it is easy to see that K(P,)\/—1InP./n + o(y/—In P./n) to achieve block
R — h is always an upper bound t&,(R) and hence error probability P, with fixed block lengthn — where
Theorem 2 implies: the O(y/—1n P./n) is called the redundancy rate. The

. exact constantK(P.) is also computed and clearly
CnlR) < pxrlgr(l;)?):h En(R) < png%%:h E(R)<R—h depends on the probability distribution of the source. The



converse, proved in [1] for binary symmetric sources,
is not universal and moreover, cannot be made so. A
simple counter-example is that given = y, suppose
x is uniform on some subset of, C X, where
ISy = K' < |X] for all y € Y. In this case, the
random coding error exponett,.(R) is a straight line
E.(R) = R —In|K|. For this example, the redundancy
rate needs to bl P, /n when using random coding, and
could potentially be zero with some other scheme.
Theorem 2 tells us that for block length, rate
R = H(pyy) + K"(|X])/—InP./n then the block ' » k
error is smaller thanP,, no matter what distribution
is encountered. While not tight, it does show that @iy 3. Non concaveness gt (@) defined in (5) ,E = 0, J — 2.
redundancy 0O (y/— In P./n) suffices for universality.

I1l. PROOF OFTHEOREM 2 F distributi finite alphabett’ x ¥
, , . or a distributionp,, on a finite alphabeft’ x ), we
In this section we prove Theorem 2. First, we need & . y tilted distribution ofp,, by 7%,.

technical lemma and definitions of tilted distributions|[6].

X (In X)% + (1-%) In (1-x )2

To((x, 1))

1
A. Lemmas and Definitions [ puy(s,y)THe]tte 1
i . —p o seX pxy(xa y) e
In this paper we use the following lemma to uppep%, (¢,y) = 0, ~ I
bound a non-concave functiofy; (). tg[ggpxﬂs’t) ] g&pW(S’y) "

Lemma 1:For constantt’ > 0, write
; Obviouslyp) = p, andp?, = p,,. Write the marginal
Fe(@) = ij(lnwj — E)? (5) distribution of y under distributionpf, as pf and the
o conditional distribution ofx given y under distribution
p2, asp’ , then from the definition:
eS8y, whereS; = {FeR! |V, wr=1, andw; > xly
0, Vj} is the probability simplex of dimensiosi. Then P (z,y) = —p(y)pi‘y(x‘y)

for any distributions € Sy, y[ S po )L]l_‘_p
pxy S, Y 1+e

—p _ SEX
. E?+2E(InJ)+ (InJ)? if J >3 py) = ——
. = (8, 1) e |1te
fe@) < { E? +2E(In2) + T its—2 © 2l 2 Pl T
_ pxy(”@?J)ﬁ
whereT =t (Int;)? + to(Inty)? ©) Py, ly) = —————
1( 1) 2( 2) ly %pxy(svy)1+p
EIS
1+v1—4de? 1+ V1 +4e2
andt; = 2 ;2= 2 Denote the entropy op? by H(p2) and the condi-

tional entropy ofx given y under distributionpf, by
H(py,), then H(p,,) = H(py,). Write H(p} _, )
The proof is in the appendix. The challenge in the pro@fs the conditional entropy ot given y = y, then:
lies in the non-concavity of 5(@). In Figure 3, forJ = H(py,_,) = — >, Py, (z[y) In B ().

2thusd = (z,1—z) andE = 0, we plot fo((x,1—x)).

The maximum occurs at = t; or t5 which are defined B. Proof of the case without side-information
above.

T ~0.563 > (In2)? andT < In2.

As in the solution to Gallager's problem 5.23 in
Definition 1: Tilted distributions: For a distributiop,  [7], we use the Taylor expansion fdf,(R) to find a
on a finite alphabet¥, p € (—1,00), we denote the quadratic bound o, (R).
p—tilted distribution byp?, where Proof: From the mean value theorem, we expand
Eo(p) at0, wherep < 1, 3p; € [0, p] s.t.
P _ px(x)
@)= ————

1
1+p
= T 2
i ’ p "
Z Ey(p) = Eo(0) + pEo(0) + 5 Eg (p1)



From basic calculus, as shown in the appendix of [3], We have R — H(px) < a, VR € [H(px),In|X]).

can be shown that Combining (10) and (12), for the case without side-
dEo(p) information the theorem is proved. |
Eo(p) = 02 = H(p) 8 |
P C. Proof in General
and hencef, (0) = H(py). Note thatE,(0) = 0,and so  The general proof is parallel:
2 Proof: Once again, we expandy(p) and basic
Eo(p) < pH(px) + S (9) calculus as shown in the appendix of [3], reveals that
wherea > 0 is any upper bound of, (p;) that holds, Bl (p) = dEo(p) _ H(p’, ) (13)
Vp1 € [0, 1]. Substitute (9) into the definition of,.(R) dp xly
to get £y (R) and hencef(0) = H(p,y,). Thus:
= max pR — Eo(p) _ 2
Vo<t ) Eo(p) < pH(px,) + 5 (14)
> max pR — pH(px) — P _ /s
0<p<1 2 wherea > 0 is any upper bound o, (p;) that holds
— max 7g( _R- H(px))2 N (R—H(px))?> Vp; €[0,1]. Substituting as before shows that
T 0<p<1 p o 2 p2
_(B- ;{ (px))? (10) Er(R) = max pR—pH(pqy) - 5o
“ _ (R=Hl(pxy))®
for R — H(px) < a. In the last step, we note that= = T (15)
%@” is the maximizer, which is withiff0, 1]. To find for B — I < a To find bound
a, an upper bound ofE, (p), Vp € [0,1], we expand 'O T (Pxy) < a. To fin @ an ”5’222 )oun on
Ey (p) = “20) Eqy (p), Vp € [0,1], we expandEj (p) = —=
dpf(z)
= — 14+ Inpl(x X Dy Pliy—y)
> ()=, =4 2; YW H P,
— ( ) o x|y y) dﬁp(y) _
Z (1+Inps(x (lnpx( )+ H(pL)) = Zpy P + Z c}l/p H(pi‘y:y)
yey yeY
=1 Z {p4(x)(Inpg(x))® + p4(x) Inpf(x) (16)
P
By basic calculu§ we have:
+px( VH(p8) + (e )(Inpg(2)) H(pg) } HE )
H(p)? Pxly=y) _p o 9
2 X = 1
pr s SGEY - T o el (el
. 1 _ 2
Since the last term in (11) is negafivand p > 0, by —m(H(pf‘y:y)) (17)

the definition of fx(-) in (5),

and,
) < Zp ) (npl(x))® = fo(pL) 7,
apy(y) .,
2 ap HPy=y)
Lemma 1 tells us thaE, (p) < o, where yey
_ (m|x])? if x| >3 12 =D HWH@,,-,)* — H,)* (18)
| In2 if |X]=2 Y

Here we replace th@ from Lemma 1 with a looser 3although the upper bound ot (p) is not tight as we drop

upper boundn 2. Since(In|X|)? > In|X| for |X| >3, the negative term in (11), it has the right order oi|. For a
distributionp = {2, 5 IX\ Ty 2(\X| 1>} the evaluation of (11)

2This is a loose analysis. Fd®t| > 3, the upper bound on the iS ~ % (In|X|)? for large |X|, thus the upper bound in (12) of
first term is achieved whep is uniform onX, giving the maximum (In IX\)2 has the right order.
at (In |X])2 as shown in (12). The actual value of (11)(sfor the 4The tedious details of the derivation are in the proofs of Lemma 10
uniform distribution. and Lemma 11, in the appendix of [3].




Substituting (17) and (18) in (16), we haE')' (p) dropping the negative term. We also suspect that similar
universal bounds exist for all sorts of error exponents.

=1 +p Zpy [Zﬁﬁty(ﬂf\y)(hlﬁﬁty(ﬂy))z] It would be interesting to find a unified treatment that
x could also give a universal bound on the error exponent

1 B _ . . . .
- ; Zpﬁ(y)H(ng y)2 for lossy source coding investigated in [8].
v APPENDIX
+Zﬁ§(?¥)H(7§\y:y)2 - H(ﬁ§|y)2 A. Proof of Lemma 1

Proof: We prove Lemma 1 by solving the following
= 1+pzpy [Zpﬁ‘y(x\y)(lnﬁ’x"y(ﬂy)f] maximization problem forfz (&) with constraintd €

Sy.
2
Y + p Zpy le:y) ~He le) ) max fg(d) = max XJ: (Inw; — E)?
DES B\ _&5 S] — i
Since} pxly(m|y) =1foranyy € Y, Lemma 1 tells -
us, We have one equality constrai@;zle = 1 and

5 (2l (n 5’ (2lu))2 < a o0y J inequality constraintsw; > 0, Vj = 1,2,...,J,
2_ Py (o), (o) < (20) for the maximization problem. Note thats (<) is a

In|X))?2 if |X] >3 bounded differentiable function ar®); is a compact set
wherea = { 02 if x| =2 in R/. Thus, there exists a point i§;, to maximize
] it. We examine the necessary conditions for a point
It is clear that: @*, in Sy, to maximize fz(&). By the Karush-Kuhn-
H(ﬁi|y:y)2 <(In|X)?<a, Yy (21) Tucker necessary conditions [2], there exist > 0,
j=12,..,Jand)\ >0, s.t.

Substituting (20) and (21) in (19) and dropping the last
term in (19) which is negative, we have

7// p _ o
< 1+pzpy ergpﬁ(y)a—a(ZZ)

Since (In|X])? > In|X| for |X| > 3, we haveR —
H(pyy) < a, VR € [H(py)y), In|X]). Combining (15)
and (22), the general theorem is proved.

Vfe(@ +Z%w +sz =0

yjwi =0, Vj=12,..,J; and Zw;:1

That is,

*\2 * _
IV. CONCLUSIONS ANDFUTURE WORK (nwj)”+2(1 - E)Inwj +7; + A - 2E=0

In this paper we have derived a universal lower bound _
to random source coding error exponents. This bound e
has the quadratic form(R — h)?, wherea, determining
the shape of the quadratic function, is determined by th¥ote that
size of the source alphabet, aRd- h is the excess rate 0 fg(J)
beyond the relevant entropy. It quantifies the intuitive Ow;
idea that driving the probability of error to zero COMes) £, ()
at the cost of either greater rate or longer block- Iengthﬁbﬁéo (Inw;)? +2(1 = E) Inwj |, 0 < 00
These results are the source coding counterparts to the ’
quadratic bounds on channel coding error exponentsand thus to maximizgg (), thew; are strictly positive.
Exercise 5.23 of [7], which can also be tightened slightlilence~; = 0,
by using Lemma 1 as shown in [4]. Interestingly, the
side-information alphabet size plays no role in the bound. (Inwj ) +2(1 - E)nwj +A =28 =0, ¥

Numerical investigation reveals that this bound is .
loose and so it remains an open problem to see if it nd Zw =1
can be tightened while still maintaining an easy closed-
form expression. This will involve solving the non- Sincelnw; is a root of a quadratic equatiar +2(1—

concave maximization problem in (11) exactly instead af)z + A — 2E = 0, this impliesw; can only be either

J
wy=0, Vj=12..J;and Y wi=1

|wj=0 = (lnwj)2 +2(1-FE) lnwj|wj=0 =00



t1 = e orty = P2, where; and g3, are the two roots has real-value roots if and only ﬁiﬁ >1,0or £ <
of the quadratic equation. Because+ 32 = —2 + 2F, %m % ~ 0.307. For this case:

we knowt t; = e~ *"2F. Now, either all thew?’s have
the same valué/.J and we are essentially done, or there
are K of wi's aret;, J — K of wj’s arets, whereK is
an integer and < K < J. In that case, we would have
the following equations:
t1t2 = 6_2+2E

Kty +(J—K)ta =1

Solve fort, using the first equation and substitute into
the linear one:

f8()

2
Z wj(lnw; — E)?
j=1

2
> wi(lnw,)® + 2H(S)E + E?

j=1
2
< max Y wij(lnw; —0)? +2(In2)F + E?
GES =1
< ti(Int1)? +to(Inty)* 4+ 2(In2)E + E?

Wheret; andt, are the two different roots of (24) with

K , 1

2 ; —242E _
TRkl joghte 0

This quadratic equation has real roots if and only if the
following is true

AK e—2+2E
J—-K

1

(J_K)% >0

E=0:t®—t+e 2 =0. Hence forE < %lni,

fe(@) <T+2(In2)E + E? (25)

WhereT' is defined in (7). Numerically]" ~ 0.563 >
(In2)2 ~ 0.480.

2 . . .
For £ > %ln % the optimal point is at0.5,0.5):

fe(@) < (In2)*+2(In2)E + E? (26)

Because of the assumption that< K < J , this can Combining (25) and (26), and becauge> (In 2)2, we

be simplified to

82_2E

4

> K(J - K)

SinceE > 0, we have,
[1]
[2]

With 0 < K < J and bothK and.J being positive inte- [
gers, the above condition can only possibly be satisfied
if J =2, K= 1. Otherwise for allJ > 3, all the w;f [4]
have to be the same to optimize the desired functior[S]

Sincerzlw;f = 1, we know that the optimal point is

2 2—2E
>

1.847 ~ —
4 4

> K(J - K)

wj = 1/J, Vj. Substituting intofx (&), we getv.J >3,  [6]
- . (7]
fe(@) < fe(d)
J 8]
1 1 2
= 2 (3 -5)

J=1 El
= E?*4+2E(InJ)+ (InJ)*  (23) 110]

For J =2, K = 1, the quadratic equation:

t2 —t4+ 672+2E =0 (24)

5Note that a quadratic equatien:2 + bz + ¢ = 0 has real roots if
and only ifb> — 4ac > 0

With (23) and (27) we prove the lemma.

conclude that, for allZ > 0,

fe(@) <T+2(In2)E + E? (27)

]
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