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Abstract— We consider the problem of block-size selec-
tion to achieve a desired probability of error for universal
source coding. While Baron,et al in [1], [9] studied this
question for rates in the vicinity of entropy for known
distributions using central-limit-theorem techniques, we are
interested in all rates for unknown distributions and use
error-exponent techniques. By adapting a technique of
Gallager from the exercises of [7], we derive a universal
lower bound to the source-coding error exponent that
depends only on the alphabet size and is quadratic in the
gap to entropy.

I. I NTRODUCTION

In [10], the lossless source coding with decoder
side-information problem, as shown in Figure 1, is
introduced. The source and decoder side-information
sequence(xn

1 , yn
1 ) are drawn iid from a joint distribution

pxy on a finite alphabetX × Y. If the decoder knows
yn
1 , the error probabilityPr(x̂n

1 6= xn
1 ), goes to0, as the

code lengthn goes to infinity, for any rateR > H(px|y ),
whereH(px|y ) is the conditional entropy ofx given y .
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Fig. 1. Lossless source coding with decoder side-information

The performance of the coding system, i.e. how fast
the error probability converges to0 with block lengthn,
when the coding rate is above the minimum required
rate, is studied in [5], [6], [7]. We summarize the
relevant error exponent results from the literature in the
following.

Theorem 1:[6] Assume a decoder with access to the
side information, where the memoryless source and side
information are generated from a distributionpxy . A ran-
dom binning encoder and jointly ML decoding system,
shown in Figure 1, has error probabilityPr(x̂n

1 6= xn
1 ) ≤
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e−nEr(R), where

Er(R) = max
0≤ρ≤1

ρR− Ē0(ρ) (1)

whereĒ0(ρ) = ln(
∑

y

(
∑

x

pxy (x, y)
1

1+ρ )1+ρ)

Without decoder side information, the Gallager func-
tion Ē0 simplifies1 to:

E0(ρ) = (1 + ρ) ln(
∑

x∈X
px(x)

1
1+ρ )

In Theorem 1, the random binning scheme at the
encoder is uniform, and thus universal in nature [6].
However for the ML decoding rule, the decoder needs
to know the statistics of the source. In [5], a universal
system based on minimum entropy decoding is shown
to achieve the same error exponent asymptotically. For
the universal decoder,

Pr(x̂n
1 6= xn

1 ) ≤ e−n(Er(R)−φ(n)) (2)

Whereφ(n) is the vanishing term|X | ln n
n for the case

without side-information andφ(n) = |X ||Y| ln n
n for the

case with decoder side-information.

A. Motivation and related work

For fixed block source coding systems, block length
is an important parameter as it is related to both system
delay and complexity. Suppose there is a system-level
requirement that the block error probabilityPr(xn

1 6=
x̂n
1 ) be below some constantPe > 0. If the distributions

are known, the minimum block length can be calculated
from Theorem 1. However, the exact distribution need
not be available to the encoder since that knowledge
is not needed to do uniform binning. Thus, a universal
estimate to the error exponent is desirable.

A related problem is studied in [1], [9]. They turn
the question around and ask: for non-asymptotic length
source coding with side-information, what is the mini-
mum rate required to achieve block errorPe assuming
that the distribution is in fact known? A more quanti-
tative discussion of the relation between the problem in
[1] and our work here is deferred to Section II-A.

1This is the source coding counterpart of the channel coding result
in Theorem 5.6.4 [7].



B. A universal bound on channel coding exponents

In Exercise 5.23 [7], Gallager gives a quadratic lower
bound on the random channel coding error exponent
for a discrete memoryless channelP (·|·) with output
alphabet sizeJ . If Q is the distribution that achieves
the channel capacityC, then the random coding error
exponentEc

r(R,Q), defined in Theorem 5.6.4 of [7] is
lower bounded by the following quadratic function of
the gap to capacity(C −R) for all R < C.

Ec
r(R, Q) ≥ (C −R)2

8/e2 + 4[ln J ]2
(3)

This bound can be further tightened and we give the new
result as a corollary to Lemma 1. This bound is universal
in the sense that it only depends on the size of output
alphabet and the gap to capacity and not on the detailed
channel statistics.

Following Gallager’s techniques, we derive universal
quadratic bounds on the random source coding error
exponent with and without decoder side-information. For
both cases, the quadratic bounds are only determined by
the gap to entropy and the size of the source alphabet
|X |. The results are summarized in Theorem 2. The proof
details are in Section III.

II. M AIN RESULTS AND DISCUSSION

Theorem 2:For a memoryless sourcex and decoder
side informationy , jointly generated iid frompxy with
conditional entropyH(px|y ) = h on finite alphabetX ×
Y, the random coding error exponentEr(R), defined in
(1), is lower bounded by a quadratic function,∀R ∈
[H(px|y ), ln |X |):

Er(R) ≥ Gh(R)

where Gh(R) =

{
(R−h)2

2(ln |X |)2 if |X | ≥ 3
(R−h)2

2 ln 2 if |X | = 2
(4)

Because the bound depends only on the gap to entropy,
we can also write it asG(R−h). Furthermore, if there is
no side-information, the source is frompx , s.t.H(px) =
h and the same bound applies.

It is interesting to note that this quadratic bound on
the error exponentEr(R) has no dependence on the size
of the side-information alphabet|Y|.
A. Discussion and Examples

For sources withH(px) = h, it is easy to see that
R − h is always an upper bound toEr(R) and hence
Theorem 2 implies:

Gh(R) ≤ min
px :H(px )=h

Er(R) ≤ max
px :H(px )=h

Er(R) ≤ R− h

To illustrate the looseness of our bounds, consider
|X | = 3, and distributionspx , s.t. H(px) = h = 0.394.
Since the alphabet size is so small, we can use brute-
force optimization to obtain the upper and lower contours
of possibleEr(R). These are plotted along with the
universal quadratic lower boundG(R − h) = (R−h)2

2(ln 3)2

and the linear upper boundR− h in Figure 2.
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For ML decoding where the decoder knows the dis-
tribution, the encoder can pick a block length sufficient
to achieve block error probabilityPr(xn

1 6= x̂n
1 ) ≤ Pe,

knowing only the gap to entropyR − h and the source
alphabet size|X | by choosing

n ≥ − ln Pe/G(R− h)

The size of the side-information alphabet|Y| is not
needed at all! If the decoder is also ignorant of the
joint distribution, thenφ(n) in (2) must be taken into
consideration.n can be chosen by solving:

nG(R− h)− nφ(n) ≥ − ln Pe

Sincenφ(n) = |X ||Y| ln n, this implies that determining
n from our bound requires the encoder to know the side-
information alphabet size. At low probabilities of error,
the dependence is relatively weak however since theln n
is dominated by thenG(R− h) term.

In [1], it is shown that, for source coding with
side-information, the required rate isH(px|y ) +
K(Pe)

√
− ln Pe/n + o(

√
− ln Pe/n) to achieve block

error probabilityPe with fixed block lengthn — where
the O(

√
− ln Pe/n) is called the redundancy rate. The

exact constantK(Pe) is also computed and clearly
depends on the probability distribution of the source. The



converse, proved in [1] for binary symmetric sources,
is not universal and moreover, cannot be made so. A
simple counter-example is that giveny = y, suppose
x is uniform on some subset ofSy ⊂ X , where
|Sy| = K ′ < |X | for all y ∈ Y. In this case, the
random coding error exponentEr(R) is a straight line
Er(R) = R− ln |K|. For this example, the redundancy
rate needs to beln Pe/n when using random coding, and
could potentially be zero with some other scheme.

Theorem 2 tells us that for block lengthn, rate
R = H(px|y ) + K ′′(|X |)

√
− ln Pe/n then the block

error is smaller thanPe, no matter what distribution
is encountered. While not tight, it does show that a
redundancy ofO(

√
− ln Pe/n) suffices for universality.

III. PROOF OFTHEOREM 2

In this section we prove Theorem 2. First, we need a
technical lemma and definitions of tilted distributions[6].

A. Lemmas and Definitions

In this paper we use the following lemma to upper
bound a non-concave functionfE(·).

Lemma 1:For constantE ≥ 0, write

fE(~ω) =
J∑

j=1

ωj(lnωj − E)2 (5)

~ω ∈ SJ , whereSJ = {~ω ∈ RJ |∑k ωk = 1, and ωj ≥
0, ∀j} is the probability simplex of dimensionJ . Then
for any distribution~ω ∈ SJ ,

fE(~ω) ≤
{

E2 + 2E(ln J) + (ln J)2 if J ≥ 3
E2 + 2E(ln 2) + T if J = 2 (6)

whereT = t1(ln t1)2 + t2(ln t2)2 (7)

and t1 =
1 +

√
1− 4e−2

2
; t2 =

1 +
√

1 + 4e−2

2
T ≈ 0.563 > (ln 2)2 andT < ln 2.

The proof is in the appendix. The challenge in the proof
lies in the non-concavity offE(~ω). In Figure 3, forJ =
2 thus~ω = (x, 1−x) andE = 0, we plotf0((x, 1−x)).
The maximum occurs atx = t1 or t2 which are defined
above.

Definition 1: Tilted distributions: For a distributionpx

on a finite alphabetX , ρ ∈ (−1,∞), we denote the
ρ−tilted distribution bypρ

x , where

pρ
x (x) =

px(x)
1

1+ρ

∑
s∈X

px(s)
1

1+ρ
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Fig. 3. Non concaveness offE(~ω) defined in (5) ,E = 0, J = 2.

For a distributionpxy on a finite alphabetX × Y, we
denotex − y tilted distribution ofpxy by p̄ρ

xy ,

p̄ρ
xy (x, y) =

[
∑

s∈X
pxy (s, y)

1
1+ρ ]1+ρ

∑
t∈Y

[
∑

s∈X
pxy (s, t)

1
1+ρ ]1+ρ

× pxy (x, y)
1

1+ρ

∑
s∈X

pxy (s, y)
1

1+ρ

Obviouslyp0
x = px andp̄0

xy = pxy . Write the marginal
distribution of y under distributionp̄ρ

xy as p̄ρ
y and the

conditional distribution ofx given y under distribution
p̄ρ

xy as p̄ρ
x|y , then from the definition:

p̄ρ
xy (x, y) = p̄ρ

y (y)p̄ρ
x|y (x|y)

p̄ρ
y (y) =

[
∑

s∈X
pxy (s, y)

1
1+ρ ]1+ρ

∑
t∈Y

[
∑

s∈X
pxy (s, t)

1
1+ρ ]1+ρ

p̄ρ
x|y (x|y) =

pxy (x, y)
1

1+ρ

∑
s∈X

pxy (s, y)
1

1+ρ

Denote the entropy ofpρ
x by H(pρ

x ) and the condi-
tional entropy ofx given y under distributionp̄ρ

xy by
H(p̄ρ

x|y ), then H(p̄0
x|y ) = H(px|y ). Write H(p̄ρ

x|y=y)
as the conditional entropy ofx given y = y, then:
H(p̄ρ

x|y=y) = −∑
x p̄ρ

x|y (x|y) ln p̄ρ
x|y (x|y).

B. Proof of the case without side-information

As in the solution to Gallager’s problem 5.23 in
[7], we use the Taylor expansion forE0(R) to find a
quadratic bound onEr(R).

Proof: From the mean value theorem, we expand
E0(ρ) at 0, whereρ ≤ 1, ∃ρ1 ∈ [0, ρ] s.t.

E0(ρ) = E0(0) + ρE
′
0(0) +

ρ2

2
E
′′
0 (ρ1)



From basic calculus, as shown in the appendix of [3], it
can be shown that

E
′
0(ρ) =

dE0(ρ)
dρ

= H(pρ
x ) (8)

and henceE
′
0(0) = H(px). Note thatE0(0) = 0, and so

E0(ρ) ≤ ρH(px) +
ρ2

2
α (9)

whereα > 0 is any upper bound ofE
′′
0 (ρ1) that holds,

∀ρ1 ∈ [0, 1]. Substitute (9) into the definition ofEr(R)
to getEr(R)

= max
0≤ρ≤1

ρR− E0(ρ)

≥ max
0≤ρ≤1

ρR− ρH(px)− ρ2

2
α

= max
0≤ρ≤1

−α

2
(ρ− R−H(px)

α
)2 +

(R−H(px))2

2α

=
(R−H(px))2

2α
(10)

for R −H(px) ≤ α. In the last step, we note thatρ =
R−H(px )

α is the maximizer, which is within[0, 1]. To find
α, an upper bound onE

′′
0 (ρ), ∀ρ ∈ [0, 1], we expand

E
′′
0 (ρ) = dH(pρ

x )
dρ

= −
∑

x

(1 + ln pρ
x (x))

dpρ
x (x)
dρ

=
∑

x

(1 + ln pρ
x (x))

pρ
x (x)

1 + ρ
(ln pρ

x (x) + H(pρ
x ))

=
1

1 + ρ

∑
x

{
pρ

x (x)(ln pρ
x (x))2 + pρ

x (x) ln pρ
x (x)

+pρ
x (x)H(pρ

x ) + pρ
x (x)

(
ln pρ

x (x)
)
H(pρ

x )
}

=
1

1 + ρ

∑
x

pρ
x (x)(ln pρ

x (x))2 − H(pρ
x )2

1 + ρ
(11)

Since the last term in (11) is negative2 and ρ > 0, by
the definition offE(·) in (5),

E
′′
0 (ρ) ≤

∑
x

pρ
x (x)(ln pρ

x (x))2 = f0(pρ
x )

Lemma 1 tells us thatE
′′
0 (ρ) ≤ α, where

α =
{

(ln |X |)2 if |X | ≥ 3
ln 2 if |X | = 2 (12)

Here we replace theT from Lemma 1 with a looser
upper boundln 2. Since(ln |X |)2 > ln |X | for |X | ≥ 3,

2This is a loose analysis. For|X | ≥ 3, the upper bound on the
first term is achieved whenpρ

x is uniform onX , giving the maximum
at (ln |X |)2 as shown in (12). The actual value of (11) is0 for the
uniform distribution.

we have R − H(px) ≤ α, ∀R ∈ [H(px), ln |X |).
Combining (10) and (12), for the case without side-
information the theorem is proved.3 ¥

C. Proof in General

The general proof is parallel:
Proof: Once again, we expand̄E0(ρ) and basic

calculus as shown in the appendix of [3], reveals that

Ē
′
0(ρ) =

dĒ0(ρ)
dρ

= H(p̄ρ
x|y ) (13)

and henceĒ
′
0(0) = H(px|y ). Thus:

Ē0(ρ) ≤ ρH(px|y ) +
ρ2

2
α (14)

whereα > 0 is any upper bound of̄E
′′
0 (ρ1) that holds

∀ρ1 ∈ [0, 1]. Substituting as before shows that

Er(R) ≥ max
0≤ρ≤1

ρR− ρH(px|y )−
ρ2

2
α

=
(R−H(px|y ))2

2α
(15)

for R − H(px|y ) ≤ α. To find α, an upper bound on

Ē
′′
0 (ρ), ∀ρ ∈ [0, 1], we expandĒ

′′
0 (ρ) =

dH(pρ
x|y )

dρ

=
d

dρ

∑

y∈Y
p̄ρ

y (y)H(p̄ρ
x|y=y)

=
∑

y∈Y
p̄ρ

y (y)
dH(p̄ρ

x|y=y)

dρ
+

∑

y∈Y

dp̄ρ
y (y)
dρ

H(p̄ρ
x|y=y)

(16)

By basic calculus4, we have:

dH(p̄ρ
x|y=y)

dρ
=

1
1 + ρ

∑
x

p̄ρ
x|y (x|y)(ln p̄ρ

x|y (x|y))2

− 1
1 + ρ

(
H(p̄ρ

x|y=y)
)2

(17)

and,

∑

y∈Y

dp̄ρ
y (y)
dρ

H(p̄ρ
x|y=y)

=
∑

y

p̄ρ
y (y)H(p̄ρ

x|y=y)2 −H(p̄ρ
x|y )

2 (18)

3Although the upper bound onE
′′
0 (ρ) is not tight as we drop

the negative term in (11), it has the right order on|X |. For a
distributionp = { 1

2
, 1
2(|X|−1)

, ..., 1
2(|X|−1)

}, the evaluation of (11)

is ∼ 1
4
(ln |X |)2 for large |X |, thus the upper bound in (12) of

(ln |X |)2 has the right order.
4The tedious details of the derivation are in the proofs of Lemma 10

and Lemma 11, in the appendix of [3].



Substituting (17) and (18) in (16), we havēE
′′
0 (ρ)

=
1

1 + ρ

∑
y

p̄ρ
y (y)[

∑
x

p̄ρ
x|y (x|y)(ln p̄ρ

x|y (x|y))2]

− 1
1 + ρ

∑
y

p̄ρ
y (y)H(p̄ρ

x|y=y)2

+
∑

y

p̄ρ
y (y)H(p̄ρ

x|y=y)2 −H(p̄ρ
x|y )

2

=
1

1 + ρ

∑
y

p̄ρ
y (y)[

∑
x

p̄ρ
x|y (x|y)(ln p̄ρ

x|y (x|y))2]

+
ρ

1 + ρ

∑
y

p̄ρ
y (y)H(p̄ρ

x|y=y)2 −H(p̄ρ
x|y )

2 (19)

Since
∑

x p̄ρ
x|y (x|y) = 1 for any y ∈ Y, Lemma 1 tells

us,
∑

x

p̄ρ
x|y (x|y)(ln p̄ρ

x|y (x|y))2 ≤ α (20)

whereα =
{

(ln |X |)2 if |X | ≥ 3
ln 2 if |X | = 2

It is clear that:

H(p̄ρ
x|y=y)2 ≤ (ln |X |)2 ≤ α, ∀y (21)

Substituting (20) and (21) in (19) and dropping the last
term in (19) which is negative, we have

Ē
′′
0 (ρ) ≤ 1

1 + ρ

∑
y

p̄ρ
y (y)α +

ρ

1 + ρ

∑
y

p̄ρ
y (y)α = α (22)

Since (ln |X |)2 > ln |X | for |X | ≥ 3, we haveR −
H(px|y ) ≤ α, ∀R ∈ [H(px|y ), ln |X |). Combining (15)
and (22), the general theorem is proved. ¥

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we have derived a universal lower bound
to random source coding error exponents. This bound
has the quadratic forma(R−h)2, wherea, determining
the shape of the quadratic function, is determined by the
size of the source alphabet, andR−h is the excess rate
beyond the relevant entropy. It quantifies the intuitive
idea that driving the probability of error to zero comes
at the cost of either greater rate or longer block-lengths.
These results are the source coding counterparts to the
quadratic bounds on channel coding error exponents in
Exercise 5.23 of [7], which can also be tightened slightly
by using Lemma 1 as shown in [4]. Interestingly, the
side-information alphabet size plays no role in the bound.

Numerical investigation reveals that this bound is
loose and so it remains an open problem to see if it
can be tightened while still maintaining an easy closed-
form expression. This will involve solving the non-
concave maximization problem in (11) exactly instead of

dropping the negative term. We also suspect that similar
universal bounds exist for all sorts of error exponents.
It would be interesting to find a unified treatment that
could also give a universal bound on the error exponent
for lossy source coding investigated in [8].

APPENDIX

A. Proof of Lemma 1

Proof: We prove Lemma 1 by solving the following
maximization problem forfE(~ω) with constraint~ω ∈
SJ .

max
~ω∈SJ

fE(~ω) = max
~ω∈SJ

J∑

j=1

ωj(ln ωj −E)2

We have one equality constraint
∑J

j=1 ωj = 1 and
J inequality constraints,ωj ≥ 0, ∀j = 1, 2, ..., J ,
for the maximization problem. Note thatfE(~ω) is a
bounded differentiable function andSJ is a compact set
in RJ . Thus, there exists a point inSJ , to maximize
it. We examine the necessary conditions for a point
~ω∗, in SJ , to maximizefE(~ω). By the Karush-Kuhn-
Tucker necessary conditions [2], there existγj ≥ 0,
j = 1, 2, ..., J andλ ≥ 0, s.t.

∇fE(~ω∗) +
J∑

j=1

γj∇ω∗j + λ∇
J∑

j=1

ω∗j = 0

γjω
∗
j = 0, ∀j = 1, 2, ..., J ; and

J∑

j=1

ω∗j = 1

That is,

(ln ω∗j )2 + 2(1− E) ln ω∗j + γj + λ− 2E = 0

γjω
∗
j = 0, ∀j = 1, 2, ..., J ; and

J∑

j=1

ω∗j = 1

Note that

∂fE(~ω)
∂ωj

|ωj=0 = (ln ωj)2 + 2(1− E) ln ωj |ωj=0 = ∞
∂fE(~ω)

∂ωj
|ωj 6=0 = (ln ωj)2 + 2(1− E) ln ωj |ωj 6=0 < ∞

and thus to maximizefE(~ω), theω∗j are strictly positive.
Henceγj = 0,

(lnω∗j )2 + 2(1−E) ln ω∗j + λ− 2E = 0, ∀j

and
J∑

j=1

ω∗j = 1

Sinceln ω∗j is a root of a quadratic equationx2+2(1−
E)x + λ − 2E = 0, this impliesω∗j can only be either



t1 = eβ1 or t2 = eβ2 , whereβ1 andβ2 are the two roots
of the quadratic equation. Becauseβ1 + β2 = −2 + 2E,
we know t1t2 = e−2+2E . Now, either all theω∗j ’s have
the same value1/J and we are essentially done, or there
areK of ω∗j ’s aret1, J −K of ω∗j ’s aret2, whereK is
an integer and0 < K < J . In that case, we would have
the following equations:

t1t2 = e−2+2E

Kt1 + (J −K)t2 = 1

Solve for t2 using the first equation and substitute into
the linear one:

K

J −K
t21 −

1
J −K

t1 + e−2+2E = 0

This quadratic equation has real roots if and only if the
following is true5

( 1
J −K

)2 − 4Ke−2+2E

J −K
≥ 0

Because of the assumption that0 < K < J , this can
be simplified to

e2−2E

4
≥ K(J −K)

SinceE ≥ 0, we have,

1.847 ≈ e2

4
≥ e2−2E

4
≥ K(J −K)

With 0 < K < J and bothK andJ being positive inte-
gers, the above condition can only possibly be satisfied
if J = 2, K = 1. Otherwise for allJ ≥ 3, all the ω∗j
have to be the same to optimize the desired function.
Since

∑J
j=1 ω∗j = 1, we know that the optimal point is

ω∗j = 1/J , ∀j. Substituting intofE(~ω), we get∀J ≥ 3,

fE(~ω) ≤ fE(~ω∗)

=
J∑

j=1

1
J

(
ln

1
J
− E

)2

= E2 + 2E(lnJ) + (ln J)2 (23)

For J = 2, K = 1, the quadratic equation:

t2 − t + e−2+2E = 0 (24)

5Note that a quadratic equationax2 + bx + c = 0 has real roots if
and only if b2 − 4ac ≥ 0

has real-value roots if and only ife
2−2E

4 ≥ 1, or E ≤
1
2 ln e2

4 ≈ 0.307. For this case:

fE(~ω) =
2∑

j=1

ωj(lnωj − E)2

=
2∑

j=1

ωj(lnωj)2 + 2H(~ω)E + E2

≤ max
~ω∈S2

2∑

j=1

ωj(lnωj − 0)2 + 2(ln 2)E + E2

≤ t1(ln t1)2 + t2(ln t2)2 + 2(ln 2)E + E2

Wheret1 andt2 are the two different roots of (24) with
E = 0: t2 − t + e−2 = 0. Hence forE ≤ 1

2 ln e2

4 ,

fE(~ω) ≤ T + 2(ln 2)E + E2 (25)

whereT is defined in (7). Numerically,T ≈ 0.563 >
(ln 2)2 ≈ 0.480.

For E > 1
2 ln e2

4 , the optimal point is at(0.5, 0.5):

fE(~ω) ≤ (ln 2)2 + 2(ln 2)E + E2 (26)

Combining (25) and (26), and becauseT > (ln 2)2, we
conclude that, for allE ≥ 0,

fE(~ω) ≤ T + 2(ln 2)E + E2 (27)

With (23) and (27) we prove the lemma. ¤

REFERENCES

[1] D. Baron, M. A. Khojastepour, and R. G. Baraniuk. Redundancy
rates of Slepian-Wolf coding.42nd Allerton Conference, 2004.

[2] Stephen Boyd and Lieven Vandenberghe.Convex Optimization.
Cambridge University Press, 2004.

[3] Cheng Chang, Stark Draper, and Anant Sahai. Lossless coding
for distributed streaming sources.IEEE Trans. Inform. Theory,
submitted.

[4] Cheng Chang and Anant Sahai. Solution to gallager’s exercise
5.23. http://www.eecs.berkeley.edu/ cchang/523.pdf, 2006.
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