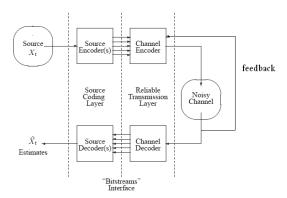
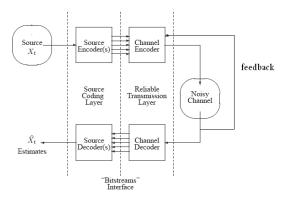
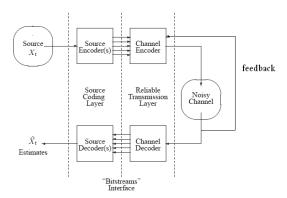
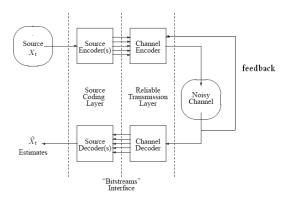

Streaming Source Coding with Delay


Cheng Chang

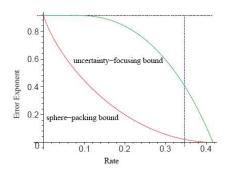

Committee in charge: Anant Sahai, Chair Kannan Ramchandran David Aldous

Motivation


- Applications which care about end-to-end delay
 - ▶ Online gaming, video conferences....
 - ▶ Control and Communication (Sahai 2001), Remote surgery...



• Fixed length block coding (Shannon), X_t is a long block ready at time 0


- Fixed length block coding (Shannon), X_t is a long block ready at time 0
- Hard real-time (Gilbert/ Neuhoff, Shannon), X_t gradually available

- Fixed length block coding (Shannon), X_t is a long block ready at time 0
- Hard real-time (Gilbert/ Neuhoff, Shannon), X_t gradually available
- Streaming with long delays (this talk)— X_t gradually available, long delay

Block length and delay are not the same thing (Sahai 2006)

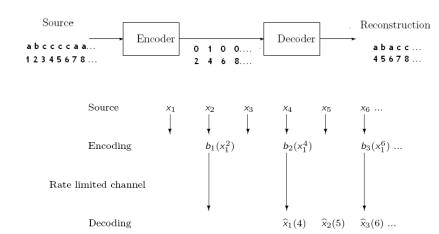
- Streaming feedback error exponent with deterministic delay
 - ▶ Upper bound: Focusing bound (Simsek 2004), not completely understood
 - ► True only if both streaming AND with feedback

What about source coding?

- Streaming source coding with delay (this talk)
 - Complete characterization of the error exponent for point-to-point coding
 - Lower and upper bounds for distributed source coding
 - Price of ignorance

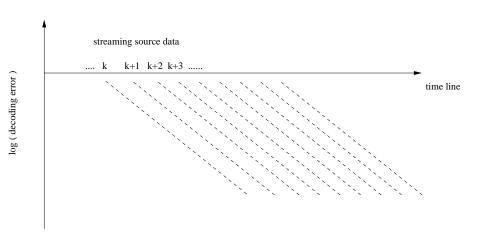
What about source coding?

- Streaming source coding with delay (this talk)
 - Complete characterization of the error exponent for point-to-point coding
 - Lower and upper bounds for distributed source coding
 - ▶ Price of ignorance
- Why block length and delay are not the same thing?
 - Dominant error event most likely trouble maker (minimum effort by source/channel)
 - ▶ Block coding: block error events (BSC ($\epsilon = 0.1$) flip half of the bits)
 - Streaming coding, decode X_t at time $t + \Delta$: past vs future (More challenges)



Outline

- Problem setup and motivation
 - Motivation
 - Streaming coding with delay
- Main results
 - P2P lossless source coding
 - P2P lossy
 - Distributed source coding
 - Source coding with side-information, an upper bound
- Conclusions and future works
 - Past vs future
 - Open problems

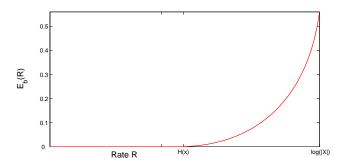

Streaming source coding with delay

• Source $\mathcal{X} = \{a, b, c\}, R = \frac{1}{2}, \Delta = 3$

Delay constrained error exponent (fixed-delay)

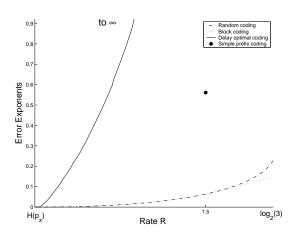
$$\Pr(\widehat{x}_i(i+\Delta) \neq x_i) \sim 2^{-\Delta E(R)} \text{ for large } \Delta$$

- Symbol error P_e
- ullet End to end delay Δ
- Communication rate R bits/ second


- Symbol error P_e
- ullet End to end delay Δ
- Communication rate R bits/ second
- $\Pr(\widehat{x}_i(i+\Delta) \neq x_i) \sim 2^{-\Delta E(R)} \leq P_e$

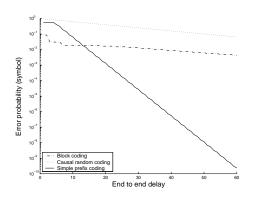
- Symbol error P_e
- ullet End to end delay Δ
- Communication rate R bits/ second
- $\Pr(\widehat{x}_i(i+\Delta) \neq x_i) \sim 2^{-\Delta E(R)} \leq P_e$
 - Given P_e and Δ : $R \sim E^{-1}(-\frac{\log P_e}{\Delta})$
 - Given P_e and R: $\Delta \sim \frac{-\log P_e}{E(R)}$

- \bullet Symbol error P_e
- ullet End to end delay Δ
- Communication rate R bits/ second
- $\Pr(\widehat{x}_i(i+\Delta) \neq x_i) \sim 2^{-\Delta E(R)} \leq P_e$
 - Given P_e and Δ : $R \sim E^{-1}(-\frac{\log P_e}{\Delta})$
 - Given P_e and R: $\Delta \sim \frac{-\log P_e}{E(R)}$
- Asymptotic result, need non-asymptotic results for small Δ
- Non-asymptotic information theory/ redundancy rate/ Minimum description length/ universal lower bounds on error exponents (Kieffer, Baron, Shamir, Gallager, Sahai, C)


Block coding error exponent (Gallager, Csiszár)

$$E_b(R) = \min_{q: H(q) \ge R} D(q || p_x) = \sup_{\rho \ge 0} \{ \rho R - (1 + \rho) \log[\sum_x p_x(x)^{\frac{1}{1 + \rho}}] \}$$

The focusing operator

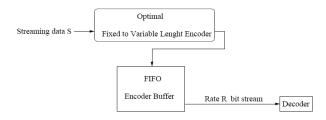

$$E(R) = \inf_{\alpha > 0} \frac{1}{\alpha} E_b((\alpha + 1)R)$$

Non-asymptotic result

• A simple variable length code beats block coding (0.65, 0.175, 0.175)

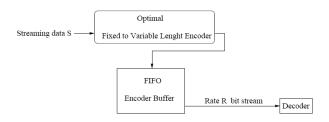
$$AA \rightarrow 0$$

 $AB \rightarrow 1000 \ AC \rightarrow 1001 \ BA \rightarrow 1010 \ BB \rightarrow 1011$
 $BC \rightarrow 1100 \ CA \rightarrow 1101 \ CB \rightarrow 1110 \ CC \rightarrow 1111$



Achievability: Variable length code + FIFO queue

• Streaming data to streaming blocks $x_1, x_2, \rightarrow x_1^N, x_{N+1}^{2N}, ..., 1 \ll N \ll \Delta < \text{buffer}$


Achievability: Variable length code + FIFO queue

- Streaming data to streaming blocks $x_1, x_2, \rightarrow x_1^N, x_{N+1}^{2N}, ..., 1 \ll N \ll \Delta < \text{buffer}$
- For each block: Tilted entropy code (Jelinek 68) or MDL (Rissanen 78)

Achievability: Variable length code + FIFO queue

- Streaming data to streaming blocks $x_1, x_2, \rightarrow x_1^N, x_{N+1}^{2N}, ..., 1 \ll N \ll \Delta < \text{buffer}$
- For each block: Tilted entropy code (Jelinek 68) or MDL (Rissanen 78)

- Decoding error → long queueing delay
- Long queueing delay ⇔ buffer overflow (Jelinek 1968, Merhav 1991)
- Optimal among all coding schemes

Converse: a focusing bound argument

- Use $(1+\frac{1}{\alpha})\Delta R$ bits to describe $x_1, x_2, ... x_{\frac{\Delta}{\alpha}}, \frac{\Delta}{\alpha}$ source symbols
- $\alpha = \frac{\text{future}}{\text{past}}$
 - ► Streaming coding with delay → block coding
 - ▶ Block length $\frac{\Delta}{\alpha}$, rate $(1 + \alpha)R$

$$|\longleftarrow (1+\frac{1}{\alpha})\Delta R \text{ bits} \longrightarrow|$$

$$1 \qquad \qquad \qquad \frac{\underline{\Delta}}{\alpha} \qquad \qquad \frac{\underline{\Delta}}{\alpha} + \underline{\Delta}$$

$$|\longleftarrow \underline{\Delta} \text{ source} \longrightarrow|$$

$$|\Longleftrightarrow \text{ symbols} \longrightarrow|$$

- Delay constrained coding → classical fixed length block coding
 - ▶ Block error $\sim 2^{-\frac{\Delta}{\alpha}E_b((1+\alpha)R)}$
 - ► True for all $\alpha > 0$: $E(R) = \inf_{\alpha > 0} \frac{1}{\alpha} E_b((\alpha + 1)R)$

Dominant error event

• Past, present, future and remote future for decoding x_t at time $t + \Delta$

Dominant error event

• Past, present, future and remote future for decoding x_t at time $t + \Delta$

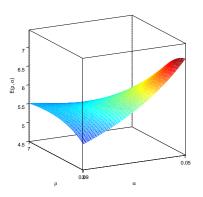
• Source behaves like the ρ^* -tilted distribution of $p_x^{\rho^*}$ from time $t - \frac{t}{\alpha^*}$ to time t

$$p_x^{\rho^*}(x) = \frac{p_X(x)^{\frac{1}{1+\rho^*}}}{\sum\limits_{s \in \mathcal{X}} p_X(s)^{\frac{1}{1+\rho^*}}}, \quad \rho^* R = (1+\rho^*) \log[\sum_x p_X(x)^{\frac{1}{1+\rho^*}}], \quad \alpha^* + 1 = \frac{H(p_x^{\rho^*})}{R}$$

Dominant error event

• Past, present, future and remote future for decoding x_t at time $t + \Delta$

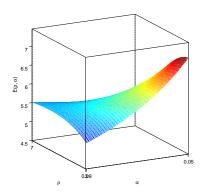
• Source behaves like the ρ^* -tilted distribution of $p_x^{\rho^*}$ from time $t - \frac{t}{\alpha^*}$ to time t


$$p_x^{\rho^*}(x) = \frac{p_x(x)^{\frac{1}{1+\rho^*}}}{\sum\limits_{s \in \mathcal{X}} p_x(s)^{\frac{1}{1+\rho^*}}}, \quad \rho^* R = (1+\rho^*) \log[\sum_x p_x(x)^{\frac{1}{1+\rho^*}}], \quad \alpha^* + 1 = \frac{H(p_x^{\rho^*})}{R}$$

• Parametrization $E(R) = \rho^* R$

A game theoretic perspective on E(R)

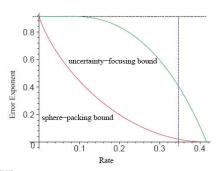
• (ρ^*, α^*) is the saddle point

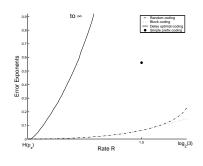

$$E(R) = \inf_{\alpha > 0} \frac{1}{\alpha} E_b((\alpha + 1)R) = \inf_{T > \alpha > 0} \sup_{\rho > 0} \frac{1}{\alpha} (\rho(1 + \alpha)R - (1 + \rho) \log[\sum_x p_x(x)^{\frac{1}{1 + \rho}}])$$

A game theoretic perspective on E(R)

• (ρ^*, α^*) is the saddle point

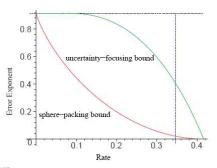
$$E(R) = \inf_{\alpha > 0} \frac{1}{\alpha} E_b((\alpha + 1)R) = \inf_{T > \alpha > 0} \sup_{\rho > 0} \frac{1}{\alpha} (\rho(1 + \alpha)R - (1 + \rho) \log[\sum_x p_x(x)^{\frac{1}{1 + \rho}}])$$

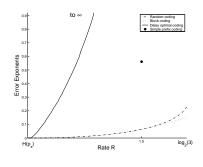



Payoff is the symbol error, adversary picks α , Jelinek picks ρ -tilted entropy code

Focusing operators

• Channel coding with feedback $\inf_{0 \le \lambda \le 1} \frac{E_{sp}(\lambda R)}{1-\lambda}$: (Simsek and Sahai, 2006)


• Source coding: $E(R) = \inf_{\alpha>0} \frac{1}{\alpha} E_b((\alpha+1)R)$



Focusing operators

- Channel coding with feedback $\inf_{0 \le \lambda \le 1} \frac{E_{sp}(\lambda R)}{1-\lambda}$: (Simsek and Sahai, 2006)
- Source coding: $E(R) = \inf_{\alpha>0} \frac{1}{\alpha} E_b((\alpha+1)R)$
- Duality: $\frac{\Delta}{\alpha}$ symbols using $R(\Delta + \frac{\Delta}{\alpha})$ bits $\leftrightarrow \frac{\lambda}{1-\lambda} \Delta R$ bits using $\frac{\Delta}{1-\lambda}$ channel uses

Outline

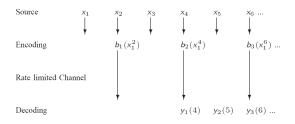

- Problem setup and motivation
 - Motivation
 - Streaming coding with delay
- Main results
 - P2P lossless source coding
 - P2P lossy
 - Distributed source coding
 - Source coding with side-information, an upper bound
- Conclusions and future works
 - Past vs future
 - Open problems

From lossless to lossy

• Temperature measurements $100.01 \simeq 100.02$, $d(x, y) \ge 0$

From lossless to lossy

- Temperature measurements $100.01 \simeq 100.02$, $d(x, y) \ge 0$
- Is focusing bound only for lossless source coding?
 - ► A unified proof for all

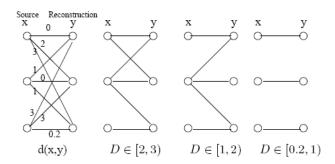


Symbol-wise decoding error exponential decays with delay

$$\Pr(d(x_i, y_i(i+\Delta)) > D) \sim 2^{-\Delta E_D(R)}$$

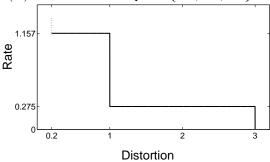
From lossless to lossy

- Temperature measurements $100.01 \simeq 100.02$, $d(x, y) \ge 0$
- Is focusing bound only for lossless source coding?
 - A unified proof for all

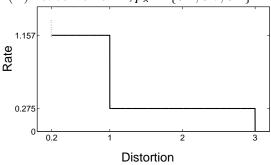

Symbol-wise decoding error exponential decays with delay

$$\Pr(d(x_i, y_i(i+\Delta)) > D) \sim 2^{-\Delta E_D(R)}$$

• No-delay (Gilbert, Neuhoff 1982), average distortion (Tse 1993)

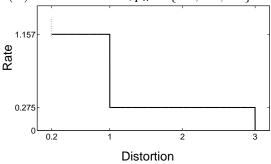

Peak Distortion Measures

- $d(x_1^n, y_1^n) = \max_i d(x_i, y_i)$
- Block coding under peak distortion ←→ streaming lossy
- Distance d(x, y) and valid reconstructions


R(D) is a stair function (Csiszár and Körner)

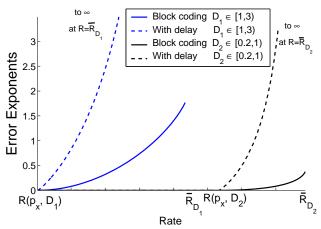
• R(D) not convex on $D, p_x = \{0.2, 0.7, 0.1\}$

R(D) is a stair function (Csiszár and Körner)


• R(D) not convex on D, $p_x = \{0.2, 0.7, 0.1\}$

• Block coding error exponent $E_D^b(R)$ (Marton, 1974)

R(D) is a stair function (Csiszár and Körner)

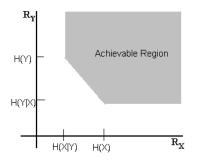

• R(D) not convex on D, $p_x = \{0.2, 0.7, 0.1\}$

- Block coding error exponent $E_D^b(R)$ (Marton, 1974)
- Scalar quantization is suboptimal (not lossless), $R(p_x, D \in [1, 3]) < H(0.9, 0.1) = 0.469$

Lossy source coding error exponent

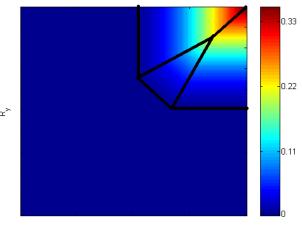
- $\Pr(d(x_i, y_i(i+\Delta)) > D) \sim 2^{-\Delta E_D(R)}$
 - $E_D(R) = \inf_{\alpha > 0} \frac{1}{\alpha} E_D^b((\alpha + 1)R)$
 - ► Cannot be parameterized unlike lossless— general proof

Outline

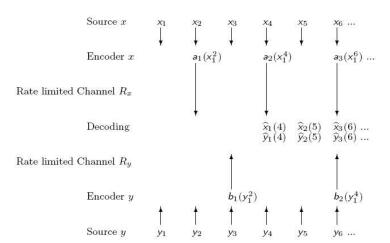

- Problem setup and motivation
 - Motivation
 - Streaming coding with delay
- Main results
 - P2P lossless source coding
 - P2P lossy
 - Distributed source coding
 - Source coding with side-information, an upper bound
- Conclusions and future works
 - Past vs future
 - Open problems

Distributed source coding (C, Draper, Sahai 2006)

Lossless Source Coding of Correlated Sources



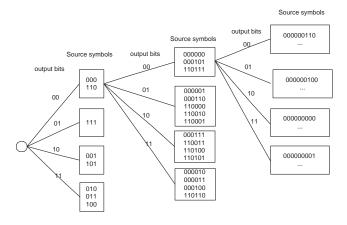
• Rate region (Slepian, Wolf)


Block coding error exponents: (Gallager, Csiszár)

- $\Pr[(x^n, y^n) \neq (\hat{x}^n, \hat{y}^n)] \sim 2^{-n \min\{E_{xy}, E_{x|y}, E_{y|x}\}}$
- Three dominant error events: xy, y|x and x|y

Streaming Slepian-Wolf coding with fixed delay

$$(x, y) \sim P_{xy}, \Delta = 3, R_x = 1/2, R_y = 1/3$$



Sequential Random Binning

• Block random binning $\Pr(b(x_1^n) = b(\widetilde{x}_1^n)) = 2^{-nR}$ if $x_1^n \neq \widetilde{x}_1^n$

Sequential Random Binning

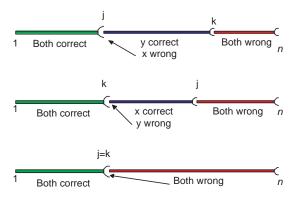
- Block random binning $\Pr(b(x_1^n) = b(\widetilde{x}_1^n)) = 2^{-nR}$ if $x_1^n \neq \widetilde{x}_1^n$
- Sequential Random binning $\Pr(b(x_1^n) = b(\widetilde{x}_1^n)) = 2^{-(n-i)R}$, t is the first position $x_i \neq \widetilde{x}_i$

ML decoding (re-estimate (x_1^n, y_1^n) at time n)

$$\bullet \ (\widehat{x}_1^n, \widehat{y}_1^n) = arg \max_{b_X(s_1^n) = b_X(x_1^n), b_Y(t_1^n) = b_Y(y_1^n)} p_{xy}(s_1^n, t_1^n)$$

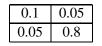
Stack algorithm (Palaiyanur, Sahai)

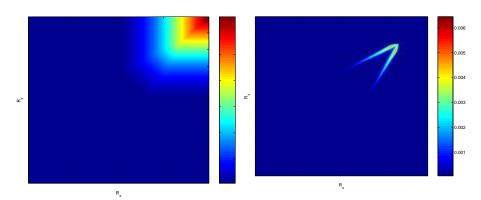
ML decoding (re-estimate (x_1^n, y_1^n) at time n)


$$\bullet \ (\widehat{x}_1^n, \widehat{y}_1^n) = arg \max_{b_X(s_1^n) = b_X(x_1^n), b_Y(t_1^n) = b_Y(y_1^n)} p_{xy}(s_1^n, t_1^n)$$

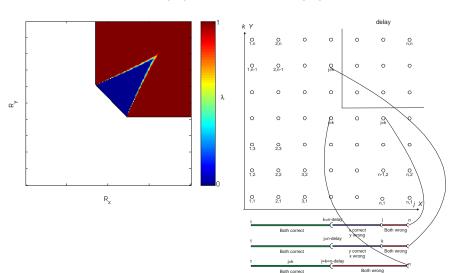
- ► Stack algorithm (Palaiyanur, Sahai)
- Universal decoding rule is complicated (fighting the polynomials)
 - Sequential minimum empirical entropy (Draper, C, Sahai)

ML decoding (re-estimate (x_1^n, y_1^n) at time n)


$$\bullet \ (\widehat{x}_1^n, \widehat{y}_1^n) = arg \max_{b_X(s_1^n) = b_X(x_1^n), b_Y(t_1^n) = b_Y(y_1^n)} p_{xy}(s_1^n, t_1^n)$$

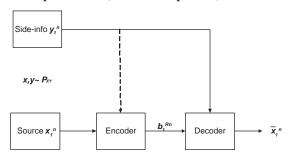

- Stack algorithm (Palaiyanur, Sahai)
- Universal decoding rule is complicated (fighting the polynomials)
 - ▶ Sequential minimum empirical entropy (Draper, C, Sahai)
- Partition of error events at time *n* (first divergent position):

Delay constrained error exponents: $E(R_x, R_y)$ and


 $E_{block} - E_{delay}$

Dominant error event for streaming coding

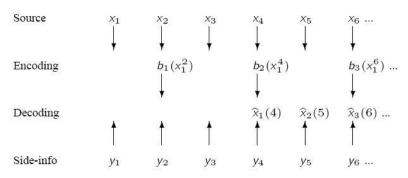
• $E(R_x, R_y) = \min\{\inf_{\gamma \in [0,1]} E_x(R_x, R_y, \gamma), \inf_{\gamma \in [0,1]} E_y(R_x, R_y, \gamma)\}$


No upper bound?

Outline

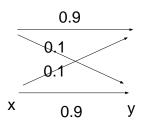
- Problem setup and motivation
 - Motivation
 - Streaming coding with delay
- Main results
 - P2P lossless source coding
 - P2P lossy
 - Distributed source coding
 - Source coding with side-information, an upper bound
- Conclusions and future works
 - Past vs future
 - Open problems

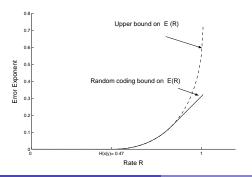
Lossless Source Coding with side-information


• Special case of Slepian-Wolf (Encoder Y perfect)

- ▶ $R \ge H(X|Y)$ to achieve ϵ -error probability $(x_1^n \ne \bar{x}_1^n)$ Slepian and Wolf
- Encoder side-information redundant

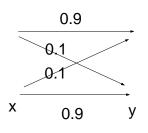
Streaming coding with delay

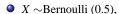

Streaming source coding with delay constraints

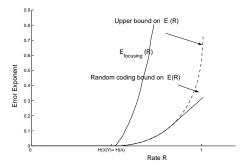

Symbol decoding error exponential decays with delay

$$\Pr(x_i \neq \widehat{x}_i(i+\Delta)) \sim 2^{-\Delta E(R)}$$

Example: x uniform and $P_{y|x}$ symmetric channel




- $X \sim \text{Bernoulli } (0.5),$
- $A \sim \text{Bernoulli } (0.1)$
- $Y = X \oplus A$

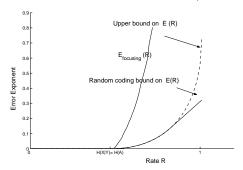

Decoder side-info only: tight in low rate regime!

Example: x uniform and $P_{v|x}$ symmetric channel

- $A \sim \text{Bernoulli } (0.1)$
- $Y = X \oplus A$

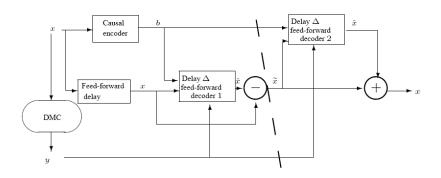
- Decoder side-info only: tight in low rate regime!
- With encoder side-info, focusing bound.
- Price of ignorance.

Compression of Encrypted Data (Johnson et al)


- Compression \rightarrow Encryption \rightarrow Decompression
 - ▶ Delay constrained source coding error exponent $E_{focusing}(R)$

Compression of Encrypted Data (Johnson et al)

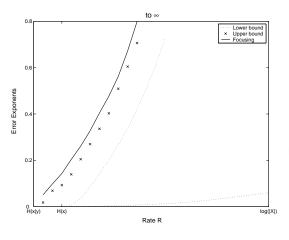
- Compression \rightarrow Encryption \rightarrow Decryption \rightarrow Decompression
 - ▶ Delay constrained source coding error exponent $E_{focusing}(R)$
- Encryption → Compression → Decompression/ Decryption
 - ► A is the source, Y is the secret key(side-info), $X = A \bigoplus Y$

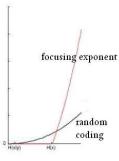

Compression of Encrypted Data (Johnson et al)

- Compression \rightarrow Encryption \rightarrow Decryption \rightarrow Decompression
 - ▶ Delay constrained source coding error exponent $E_{focusing}(R)$
- Encryption → Compression → Decompression/ Decryption
 - ▶ A is the source, Y is the secret key(side-info), $X = A \bigoplus Y$
 - ▶ Delay constrained source coding error exponent $E_{X|Y}(R)$

Proof of the upper bound

- Feed-forward channel decoding (Pinsker, Sahai)
 - ▶ Joint source-channel coding




- Computational complexity/ rate tradeoff for iterative decoding (Grover, Sahai)
 - ▶ Delay ← neighbors on the graph (resource)

Bounds on E(R)

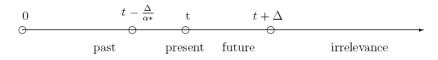
Lower bounds:

- Sequential random binning R > H(X|Y)
- ▶ Variable length coding + FIFO R > H(X)

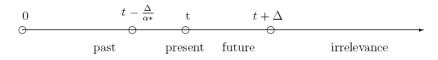
Outline

- Problem setup and motivation
 - Motivation
 - Streaming coding with delay
- Main results
 - P2P lossless source coding
 - P2P lossy
 - Distributed source coding
 - Source coding with side-information, an upper bound
- Conclusions and future works
 - Past vs future
 - Open problems

• Streaming source coding, channel coding with delay



Streaming source coding, channel coding with delay


- P-to-P lossless source coding
- P-to-P Lossy source coding
- Channel coding, no feedback (Pinsker, Sahai)
- Channel coding, with feedback (Sahai)
- Joint source-channel coding
- ► Source coding with decoder-only side-info
- Source coding with both side-info
- ► Slepian-Wolf source coding
- ▶ MAC, Degraded broadcast channels

Streaming source coding, channel coding with delay

- ▶ P-to-P lossless source coding
- P-to-P Lossy source coding
- Channel coding, no feedback (Pinsker, Sahai)
- Channel coding, with feedback (Sahai)
- Joint source-channel coding
- Source coding with decoder-only side-info
- ► Source coding with both side-info
- Slepian-Wolf source coding
- ▶ MAC, Degraded broadcast channels
- Dominant error event for t, is it [t-l,t] (past •), $[t,t+\Delta]$ (future •) or $[t-l,t+\Delta]$ (both •)?

Streaming source coding, channel coding with delay

- P-to-P lossless source coding
- P-to-P Lossy source coding •
- Channel coding, no feedback (Pinsker,Sahai)
- Channel coding, with feedback (Sahai) •
- ▶ Joint source-channel coding •?
- ► Source coding with decoder-only side-info •?
- Source coding with both side-info•
- ► Slepian-Wolf source coding •?
- ► MAC, Degraded broadcast channels •?
- Dominant error event for t, is it [t-l,t] (past •), $[t,t+\Delta]$ (future •) or $[t-l,t+\Delta]$ (both •)?

Interaction between encoder and decoder

- Focusing operator
 - P-to-P lossless source coding •
 - P-to-P Lossy source coding •
 - ► Erasure-like channel coding with feedback (Sahai) •
 - Source coding with both side-info•

Interaction between encoder and decoder

- Focusing operator
 - P-to-P lossless source coding •
 - P-to-P Lossy source coding •
 - ► Erasure-like channel coding with feedback (Sahai) •
 - Source coding with both side-info•
- Erasure-like (positive zero-error capacity) channel: trust between decoder and encoder
 - Encoder knows what decoder knows
 - Decoder knows what the encoder is doing
 - ▶ Not clear for BSC (last bit, hypothesis testing), Simsek's thesis

Interaction between encoder and decoder

- Focusing operator
 - P-to-P lossless source coding •
 - P-to-P Lossy source coding •
 - ► Erasure-like channel coding with feedback (Sahai) •
 - Source coding with both side-info•
- Erasure-like (positive zero-error capacity) channel: trust between decoder and encoder
 - Encoder knows what decoder knows
 - Decoder knows what the encoder is doing
 - ▶ Not clear for BSC (last bit, hypothesis testing), Simsek's thesis
- From the encoder's perspective:
 - Variable length code/ Queue → observable randomness (source)
 - ▶ Sequential random binning → non-observable randomness (channel, decoder side-information)
 - Variable length sequential random binning? (Joint source-channel, decoder side information)

• Binary representation of streaming coding with delay problems (p-to-p)

	Random arrival	Non-uniform source	Noisy DMC channel	Feedback	Side- information	Distortion
lossless	0	1	0	0	0	0
lossy	0	0	0	0	0	1
decoder side-info	0	0	0	0	1	0
ongoing work	1	1	0	0	0	0
Joint SC	0	1	1	0	0	0
Pinsker, Sahai	0	0	1	0	0	0
Sahai	0	0	1	1	0	0
Ultimate	1	1	1	1	1	1

▶ 64 problems?

	Random arrival	Non-uniform source	Noisy DMC channel	Feedback	Side- information	Distortion
lossless	0	1	0	0	0	0
lossy	0	0	0	0	0	1
decoder side-info	0	0	0	0	1	0
ongoing work	1	1	0	0	0	0
Joint SC	0	1	1	0	0	0
Pinsker, Sahai	0	0	1	0	0	0
Sahai	0	0	1	1	0	0
Ultimate	1	1	1	1	1	1

- ▶ 64 problems?
- ▶ 000000 is not a problem

	Random arrival	Non-uniform source	Noisy DMC channel	Feedback	Side- information	Distortion
lossless	0	1	0	0	0	0
lossy	0	0	0	0	0	1
decoder side-info	0	0	0	0	1	0
ongoing work	1	1	0	0	0	0
Joint SC	0	1	1	0	0	0
Pinsker, Sahai	0	0	1	0	0	0
Sahai	0	0	1	1	0	0
Ultimate	1	1	1	1	1	1

- ▶ 64 problems?
- ▶ 000000 is not a problem
- ▶ 010100=010000

	Random arrival	Non-uniform source	Noisy DMC channel	Feedback	Side- information	Distortion
lossless	0	1	0	0	0	0
lossy	0	0	0	0	0	1
decoder side-info	0	0	0	0	1	0
ongoing work	1	1	0	0	0	0
Joint SC	0	1	1	0	0	0
Pinsker, Sahai	0	0	1	0	0	0
Sahai	0	0	1	1	0	0
Ultimate	1	1	1	1	1	1

- ▶ 64 problems?
- ▶ 000000 is not a problem
- **▶** 010100=010000
- With memory?

	Random arrival	Non-uniform source	Noisy DMC channel	Feedback	Side- information	Distortion
lossless	0	1	0	0	0	0
lossy	0	0	0	0	0	1
decoder side-info	0	0	0	0	1	0
ongoing work	1	1	0	0	0	0
Joint SC	0	1	1	0	0	0
Pinsker, Sahai	0	0	1	0	0	0
Sahai	0	0	1	1	0	0
Ultimate	1	1	1	1	1	1

- ▶ 64 problems?
- ▶ 000000 is not a problem
- 010100=010000
- With memory?
- Universal lower bound on the error exponents— non asymptotic result.

	Random arrival	Non-uniform source	Noisy DMC channel	Feedback	Side- information	Distortion
lossless	0	1	0	0	0	0
lossy	0	0	0	0	0	1
decoder side-info	0	0	0	0	1	0
ongoing work	1	1	0	0	0	0
Joint SC	0	1	1	0	0	0
Pinsker, Sahai	0	0	1	0	0	0
Sahai	0	0	1	1	0	0
Ultimate	1	1	1	1	1	1

- ▶ 64 problems?
- ▶ 000000 is not a problem
- ▶ 010100=010000
- With memory?
- Universal lower bound on the error exponents— non asymptotic result.
- Convexity \bigcup of the focusing bound E(R)?