
Lossless coding for distributed streaming sources

Cheng Chang, Stark C. Draper, and Anant Sahai

October 18, 2006

Abstract

Distributed source coding is traditionally viewed in the block coding context — all the source
symbols are known in advance at the encoders. This paper instead considers a streaming setting
in which iid source symbol pairs are revealed to the separate encoders in real time and need to
be reconstructed at the decoder with some tolerable end-to-end delay using finite rate noiseless
channels. A sequential random binning argument is used to derive a lower bound on the error
exponent with delay and show that both ML decoding and universal decoding achieve the same
positive error exponents inside the traditional Slepian-Wolf rate region. The error events are
different from the block-coding error events and give rise to slightly different exponents. Because
the sequential random binning scheme is also universal over delays, the resulting code eventually
reconstructs every source symbol correctly with probability 1.

1 Introduction

Traditionally, “lossless” coding is considered using two distinct paradigms: fixed block coding
and variable-length coding1. As classically understood, both consider that the source-symbols are
known in advance at the encoder and that they must be mapped into a string of bits decoded by
the receiver. Fixed-block coding accepts a small probability of error and constrains the length of
the bit-string, while variable-length encoding constrains only the expected length of the bit-string in
exchange for keeping the probability of error at zero. In the point-to-point setting, both paradigms
apply generically. In contrast, distributed source coding, has traditionally been explored within
the fixed block context. In [16], Slepian and Wolf even asked:

What is the theory of variable-length encodings for correlated sources?

In the classical context of source realizations known entirely in advance, the answer is simple:
there is no nontrivial sense of variable-length encoding that applies generically while still being
interesting.2 This is easiest to see by example (Illustrated in Figure 1 and revisited as Example 2 in

This material was presented in part at the IEEE Int Symp Inform Theory, Adelaide, Australia, Sept 2005.
C. Chang is with the Department of Electrical Engineering and Computer Science, University of California

Berkeley, Berkeley, CA 94720 (E-mail: cchang@eecs.berkeley.edu).
S. C. Draper is with Mitsubishi Electric Research Labs in Cambridge, MA. This work was performed while he was

a postdoc at Wireless Foundations in the University of California Berkeley (E-mail: sdraper@eecs.berkeley.edu).
A. Sahai is with the Department of Electrical Engineering and Computer Science, University of California Berke-

ley, Berkeley, CA 94720 (E-mail: sahai@eecs.berkeley.edu).
1There are actually four different traditional cases: fixed to fixed, fixed to variable, variable to fixed, and variable

to variable. However, the last three all achieve a probability of error of zero and so we consider them together.
2At least at sum rates close to the joint source entropy rate. If the rates of communication are high enough, e.g.,

equaling the log of the cardinalities of the source alphabets, zero-error communication is possible.

1

Encoder y

Encoder x

Decoder
3

Rx

s

Ry

-

-

-
x̂1, x̂2, . . . , x̂N

ŷ1, ŷ2, . . . , ŷN

x1, x2, . . . , xN

y1, y2, . . . yN

(xi, yi) ∼ pxy

6

?

Figure 1: Slepian-Wolf distributed encoding and joint decoding of a pair of correlated sources.

Section 4). Suppose that the first encoder observes the random vector x, which consists of a sequence
of N iid uniform binary random variables. Suppose further that the second encoder observes y which
is related to x via a memoryless binary symmetric channel with crossover probability ρ < 0.5. The
Slepian-Wolf sum-rate bound is H(x , y) = 1 + H(ρ) < 2 = H(x) + H(y). But since the individual
encoders only see uniformly distributed binary sources, they do not know when the sources are
behaving jointly atypically. Therefore, they have no basis on which to adjust their encoding rates
to combat joint atypicality. Since all pairs are possible when finite blocklengths are considered,
the individual encoders must use distinct bit-strings for each of them. Since the expected length
depends only on the uniform marginal distributions, this means that the expected length must be
at least N . Thus, variable-length approaches do not, in general3, lead to zero-error Slepian-Wolf
codes for interesting rate-points.

Another view of variable-length coding is as a tool that enables us to achieve meaningful com-
pression despite not knowing the underlying probability distribution4 and allowing the rate used to
adapt to the source. If there is a low-rate, but reliable5, feedback link available from the decoder
to the two separate encoders, then this sense of variable-length Slepian-Wolf coding is possible.
[6] gives a fixed-to-variable scheme in which the stopping-time is chosen at the decoder and com-
municated back to the encoders over a low-rate feedback link. The goal of [6] is not achieving a
truly zero probability of error — rather it is willing to accept a very small probability of error in
exchange for using a rate that is as small as possible.

To answer the question posed by Slepian and Wolf in the more classical sense, we instead want to
aim for a probability of error that goes to zero for every source symbol, but at the cost of a variable
delay. To do this, we propose stepping back and eliminating the modeling assumption of encoders
having access to the entire source realization in advance. We argue that a “streaming setting”
is required to discern the system-level analog to variable-length source coding in the distributed
context. The streaming setting abstracts sources that are embedded in time as well as the fact that
all physically realizable encoders/decoders must obey some form of causality. Thus “rate” is not
just measured in bits per source symbol but in both source symbols per second and bits per second.

3One should note that, in analogy to zero-error channel coding, there are special (non-generic) cases where zero-
error Slepian-Wolf coding is possible [11] since certain symbol pairs cannot occur.

4In the point-to-point case, this is very closely related to achieving a zero-error probability. The same string can
be an atypical realization of one source model while being a typical realization of another source. Encoding all the
typical sequences correctly without knowing the underlying model requires getting all the possible sequences correctly
for any specific model.

5It is clear that our techniques from [13, 7] can also be adapted to make the system of [6] work using only noisy
feedback channels.

2

The source-rate (symbols per second) is specified as a part of the problem while the bit-rate (bits
per second) is something that we get to choose. From an engineering perspective, three desirable
qualities6 are:

• Using a low rate bit-pipe(s)

• Low end-to-end latency

• Low probability of error

The theory of source-coding should tell us the tradeoffs between these three desiderata. In addition,
we will be interested in to what extent a streaming code can be made “universal” over a class of
probability distributions.

In the point-to-point streaming setting, regardless of whether block or variable-length compres-
sion is used, the traditional initial step is the same: group symbols into source blocks. To compress
the data blocks, either use a fixed-rate block code, or a variable-length code. The resulting en-
coding is then enqueued for transmission across the bit-pipe. As long as the source entropy rate
is below the data-rate, the queue will remain stable. When block coding is used for compression,
there is a constant delay through the system, and atypical source blocks are received in error. The
probability of error is fixed at the system’s design-time and so is the end-to-end delay.

In contrast, variable-length coding induces a variable system delay. The more unlikely the
source blocks, the longer the delay experienced at run-time. Thus, while asymptotically there are
no errors when variable-length source codes are used (assuming an infinite buffer size), the delay
till a given symbol can be decoded depends on the random source realization. Because atypical
source realizations are large deviation events, the probability that some source symbol cannot be
reconstructed ∆ samples after it enters the encoder decays exponentially7 in ∆. The choice of
acceptable end-to-end delay is left to the receiver/application.

We show that this type of reliability can be achieved in a generic distributed coding context —
the probability of error goes to zero with end-to-end delay and the choice of the acceptable delay
is entirely up to the decoder. Essentially, every source symbol is recovered correctly eventually
with probability8 1. The only difference is that unlike the point-to-point case, the decoder does not
necessarily know when the estimate for the symbol has converged to its final value. Furthermore,
just as in the point-to-point setting9, both the encoding and decoding can be made universal.

In this paper, we formally define a streaming Slepian-Wolf code, and develop coding strategies
both for situations when source statistics are known and when they are not. The new tool is a
sequential binning argument that parallels the tree-coding arguments used to study convolutional
codes. We characterize the performance of the streaming schemes through an error exponent
analysis and demonstrate that the exponents are equal regardless of whether the system is informed
of the source statistics (in which case we use maximum likelihood decoding) or not (in which
case we use universal decoding). The universal decoder we design for the streaming problem is

6Of course, “implementation complexity” forms a fourth and very important consideration, but we will be ignoring
that aspect of the problem.

7In [2], we show that variable length codes used in this manner actually achieve the best possible error exponent
with delay. This is also related to the analysis of [10].

8The secret here is that we are considering a probability measure over infinite sequences. While all pairs of finite
strings may be possible, most pairs of infinite strings collectively have probability zero.

9Sliding-window Lempel-Ziv compression is one example where data is naturally encoded sequentially. It is also
universal over sources.

3

somewhat different from those familiar from the block coding literature, as are the nature of the
error exponents.

1.1 Potential applications and practical motivation

In addition to our core interest in answering some basic questions about Slepian-Wolf coding,
our formulation is also motivated by the diverse emerging application areas for distributed source
coding. Media (e.g. video-conference) sources naturally have a streaming character. Consequently,
we are motivated to explore what sort of streaming Slepian-Wolf technique matches naturally to
such situations.10

1.2 Outline

Section 2 summarizes the notation used in the paper. Section 3 reviews the classical block-coding
error exponent results for Slepian-Wolf source coding and then we state the main results of this
paper: sequential error exponents for Slepian-Wolf source coding. Section 4 presents a numeric
study of two example sources. We observe that the sequential error exponent is often the same as
the block coding error exponent. Sections 5, 6 and 7 prove the theorems in Section 3. We start with
sequential source coding for single sources in 5. This is the simplest case but it provides insights
to the nature of sequential source coding problem and sequential error events. We show that the
sequential error exponent is the same as the random block source coding error exponent. Section 6
moves on to the case with decoder side-information. Finally, Section 7 presents the proof of the
main result of the paper. We derive the sequential error exponent of distributed source coding
for correlated sources. This error exponent strictly positive everywhere inside the achievable rate
region of [16]. For all these three scenarios in Sections 5, 6 and 7, both ML and universal decoding
rules are studied. The appendix shows that the resulting error exponents are indeed the same.

2 Notation

We use serifed-fonts, e.g., x to indicate sample values, and sans-serif, e.g., x , to indicate random
variables. Bolded fonts are reserved to indicate sample or random vectors, e.g., x = xn and x = x

n,
respectively, where the vector length (n here) is understood from the context. Subsequences, e.g.,
xl, xl+1, . . . , xn are denoted as xn

l where xj
i , ∅ if i < j. Distributions are indicated with lower-case

p, e.g., x is distributed according to px(x). Sets and their elements are denoted as, e.g., x ∈ X , and
their cardinality by |X |. We use calligraphic font to denote sets, X , F , W etc, and reserve E and D to
denote encoding and decoding functions, respectively. We use standard notation for types, see, e.g.,
[5]. Let N(a;x) denote the number of symbols in the length-n vector x that take on value a. Then,
x is of type P if P (a) = N(a;x)/n. The type-class, or set of length-n vectors of type P is denoted
TP . A sequence y has conditional type V given x if N(a, b;x,y) = N(a;x)V (b|a) = P (a)V (b|a) for
every a, b. The set of sequences y having conditional type V with respect to x is called the V -shell
of x and is denoted by TV (x). When considered together, the pair (x,y) is said to have joint type

10A secondary aspect in some multimedia settings is a natural multi-scale nature to the source — the high order
bits are more important than the low order bits. To the extent that the high order bits can be made “early” and the
low-order bits can be made “late”, our constructions also naturally give more protection to the early bits as compared
to the later ones. While this interpretation might eventually be important in practice, it is a bit questionable within
the simplified model this paper considers.

4

V × P . We always use upper-case, e.g., P and V , to denote length-n types and conditional types.
As we often discuss the types of subsequences we add a superscript notation to remind the reader
of the length of the subsequence in question. If, for instance, the subsequence under consideration
is xn

l we write xn
l ∈ TP n−l . Similarly we use V n−l for the conditional type of length-(n− l +1), and

V n−l × Pn−l for the joint type. Given a joint type V × P , entropies and conditional entropies are
denoted as H(P) and H(V |P), respectively. The KL divergence between two distributions q and p
is denoted by D(q‖p).

3 Main Results

In this section, we begin by reviewing classical results on the error exponents of distributed block
coding. We then present the main results of the paper: error exponents for streaming Slepian-Wolf
coding and its special cases: point-to-point coding and source coding with decoder side information.
We analyze both maximum likelihood and universal decoding and show that the achieved exponents
are equal. Leaving numerical examples and proofs for later sections, we here compare the form of
the streaming exponents with their block coding counterparts.

3.1 Block source coding and error exponents

In the classic block-coding Slepian-Wolf paradigm, full length-N vectors x and y are observed
by their respective encoders before communication commences. In this situation a rate-(Rx, Ry)
length-N block source code consists of an encoder-decoder triplet (Ex

N , Ey
N ,DN), as we will define

shortly. For the rate-region considerations, the general case of distributed encoders can be con-
sidered by using time-sharing among codes that alternate between sending at rates close to the
marginal entropy and those that correspond to perfectly known side-information. However, it is
easy to see that this results in a substantial loss of error-exponent even in the block-coding case.
To get good exponents, something else is required:

Definition 1 A randomized length-N rate-(Rx, Ry) block encoder-decoder triplet (Ex
N , Ey

N ,DN) is
a set of maps

Ex
N : XN → {0, 1}NRx , e.g., Ex

N (xN) = aNRx

Ey
N : YN → {0, 1}NRy , e.g., Ey

N (yN) = bNRy

DN : {0, 1}NRx × {0, 1}NRy → X n × Yn, e.g., DN (aNRx , bNRy) = (x̂N , ŷN)

where common randomness, shared between the encoders and the decoder is assumed. This allows
us to randomize the mappings independently of the source sequences.

The error probability typically considered in Slepian-Wolf coding is the joint error probability,
Pr[(xN , yN) 6= (x̂N , ŷN)] = Pr[(xN , yN) 6= DN (Ex

N (xN), Ey
N (yN))]. This probability is taken over

the random source vectors as well as the randomized mappings. An error exponent E is said to be
achievable if there exists a family of rate-(Rx, Ry) encoders and decoders {(Ex

N , Ey
N ,DN)}, indexed

by N , such that

lim
N→∞

−
1

N
log Pr[(xN , yN) 6= (x̂N , ŷN)] ≥ E. (1)

5

In this paper, we study random source vectors (x, y) that are iid across time but may have
dependencies at any given time:

px ,y (x,y) =

N
∏

i=1

px ,y (xi, yi).

For such iid sources, upper and lower bounds on the achievable error exponents are derived
in [9, 5]. These results are summarized by the following theorem.

Theorem 1 (Lower bound) Given a rate pair (Rx, Ry) such that Rx > H(x |y), Ry > H(y |x),
Rx + Ry > H(x , y). Then, for all

E < min
x̄ ,ȳ

D(px̄ ,ȳ‖pxy) +
∣

∣min[Rx + Ry − H(x̄ , ȳ), Rx − H(x̄ |ȳ), Ry − H(ȳ |x̄)]
∣

∣

+
(2)

there exists a family of randomized encoder-decoder mappings as defined in Definition 1 such that (1)
is satisfied. In (2) the function |z|+ = z if z ≥ 0 and |z|+ = 0 if z < 0.

(Upper bound) Given a rate pair (Rx, Ry) such that Rx > H(x |y), Ry > H(y |x), Rx + Ry >
H(x , y). Then, for all

E > min

{

min
x̄ ,ȳ :Rx<H(x̄ |ȳ)

D(px̄ ,ȳ‖pxy), min
x̄ ,ȳ :Ry<H(ȳ |x̄)

D(px̄ ,ȳ‖pxy), min
x̄ ,ȳ :Rx+Ry<H(x̄ ,ȳ)

D(px̄ ,ȳ‖pxy)

}

(3)

there does not exists a randomized encoder-decoder mapping as defined in Definition 1 such that (1)
is satisfied.

In both bounds (x̄ , ȳ) are dummy random variables with joint distribution px̄ ,ȳ .

Remark: As long as (Rx, Ry) is in the interior of the achievable region, i.e., Rx > H(x |y),
Ry > H(y |x) and Rx +Ry > H(x , y) then the lower-bound (2) is positive. The achievable region is
illustrated in Fig 2. As shown in [5], the upper and lower bounds (3) and (2) match when the rate
pair (Rx, Ry) is achievable and close to the boundary of the region. This is analogous to the high
rate regime in channel coding where the random coding bound (analogous to (2)) and the sphere
packing bound (analogous to (3)) agree.

Theorem 1 can also be used to generate bounds on the exponent for source coding with decoder
side information (i.e., y observed at the decoder), and for source coding without side information
(i.e., y is a constant). These corollaries will prove useful as a basis for comparison as we build up
to the complete solution for streaming Slepian-Wolf coding.

Corollary 1 (Source coding with decoder side information) Consider a Slepian-Wolf problem where
y is known by the decoder. Given a rate Rx such that Rx > H(x |y), then for all

E < min
x̄ ,ȳ

D(px̄ ,ȳ‖pxy) + |Rx − H(x̄ |ȳ)|+, (4)

there exists a family of randomized encoder-decoder mappings as defined in Definition 1 such that (1)
is satisfied.

The proof of Corollary 1 follows from Theorem 1 by letting Ry be arbitrarily large. Similarly, by
letting y be deterministic so that H(x |y) = H(x) and H(y) = 0, we get the following random-coding
bound for the point-to-point case of a single source x.

6

Corollary 2 (point-to-point) Consider a Slepian-Wolf problem where y is deterministic, i.e., y =
y. Given a rate Rx such that Rx > H(x), for all

E < min
x̄

D(px̄‖px) + |Rx − H(x̄)|+ = Ex(Rx) (5)

there exists a family of randomized encoder-decoder triplet as defined in Definition 1 such that (1)
is satisfied.

-

6

Ry

Rx

H(y)

H(y |x)

H(x)H(x |y)

log |Y|

log |X |

Achievable
Region

Rx + Ry = H(x , y)

�

Figure 2: Achievable region for Slepian-Wolf source coding

3.2 Sequential Distributed Source Coding

We now state our main results for streaming encoding, and contrast them with the block-coding
results of the last section. To begin, we define a streaming encoder.

Definition 2 A randomized sequential encoder-decoder triplet Ex, Ey,D is a sequence of mappings,
{Ex

j }, j = 1, 2, ..., {Ey
j }, j = 1, 2, ... and {Dj}, j = 1, 2, ...:

Ex
j : X j −→ {0, 1}Rx , e.g., Ex

j (xj) = ajRx

(j−1)Rx+1,

Ey
j : Yj −→ {0, 1}Ry , e.g., Ey

j (yj) = b
jRy

(j−1)Ry+1.
(6)

Common randomness, shared between encoders and decoder, is assumed. This allows us to ran-
domize the mappings independently of the source sequence.

In this paper, the sequential encoding maps will always work by assigning random “parity bits”
in a causal manner to the observed source sequence. That is, the Rx (or Ry) bits generated at each

7

time in (6), are iid Bernoulli-(0.5).11 Since parity bits are assigned causally, if two source sequences
share the same length-l prefix, then their first lRx parity bits must match. Subsequent parities are
drawn independently. Such a sequential coding strategy is the source-coding parallel to tree and
convolutional codes used for channel coding [8]. In fact, we call these “parity bits” as they can be
generated using an infinite constraint-length time-varying random convolutional code.

Definition 3 The decoder mapping

Dj : {0, 1}jRx × {0, 1}jRy −→ X j × Yj

Dj(a
jRx , bjRy) = (x̂j

1(j), ŷ
j
1(j))

At each time j the decoder Dj outputs estimates of all the source symbols that have entered the
encoder by time j.

Remark: While we state Definition 2 only for Slepian-Wolf coding, it immediately specializes
to source coding with decoder side information (dropping the Ey and revealing y

n to the decoder),
and source coding without side information (dropping the Ey). We present results for both these
situations as well.

In this paper we study two error probabilities. We define the pair of source estimates at time n
as (x̂n, ŷn) = Dn(

∏n
j=1 E

x
j ,
∏n

j=1 E
y
j), where

∏n
j=1 E

x
j indicates the full nRx bit stream from encoder

x up to time n. We use (x̂n−∆, ŷn−∆) to indicate the first n − ∆ symbols of each estimate, where
for conciseness of notation both the estimate time, n, and the decoding delay, ∆, are indicated in
the superscript. With these definitions the two error probabilities we study are

Pr[x̂n−∆ 6= x
n−∆] and Pr[ŷn−∆ 6= y

n−∆].

A pair of exponents Ex > 0 and Ey > 0 is said to be achievable if there exists a family of rate-
(Rx, Ry) encoders and decoders {(Ex

j , Ey
j ,Dj)} such that

lim
∆→∞

lim
n→∞

−
1

∆
log Pr[x̂n−∆ 6= x

n−∆] ≥ Ex (7)

lim
∆→∞

lim
n→∞

−
1

∆
log Pr[ŷn−∆ 6= y

n−∆] ≥ Ey (8)

Remarks: In contrast to (1) the error exponent we look at is in the delay, ∆, rather than total
observation time, n. The order of the limits is important since the total time-period n is allowed
to go to infinity faster than the delay ∆. While the definitions of (7)–(8) and of (1) are asymptotic
in nature, the results hold for finite block-lengths and delays as well. Finally, we note that while
in (1) the error exponent of a joint error event on either x or y is considered, we provide a refined

11We assume that Rx and Ry are integer. To justify this assumption note that we can always group sets of α
successive symbols into super-symbols. These larger symbols can be encoded at an average rate αRx. Generally,
if we group α symbols together, and transmit β bits per super-symbol, we can realize an average rate α/β, i.e., a
rational rate. If desired, non-integer average rates are easily implemented by a time-varying transmission rate. For
example, say we want to implement an average encoding rate of 5/4 bits per source symbol. Say we generate one new
parity bit per symbol for each symbol observed except for the fourth symbol, eighth symbol, etc, when we generate
two. The average encoding rate is 5/4. As long as the decoding delay ∆ we target is long enough so that the decoder
received an “average” number of encoded bits – δRx – before we must make an estimate (e.g., if ∆ ≫ 1/Rx), these
small-scale issues even out. In particular, they do not effect the exponents.

8

analysis specifying potentially different exponents on either decision. The results for joint errors
are found by taking the minimum of the individual exponents, i.e.,

lim
∆→∞

lim
n→∞

−
1

∆
log Pr[(x̂n−∆, ŷn−∆) 6= (xn−∆, yn−∆)] ≥ min{Ex, Ey}.

3.3 Streaming source coding

Our first results concern streaming coding in the point-to-point setting. The first theorem we state
gives random coding error exponents for maximum likelihood decoding where the source statistics
are known, and the second exponents for universal decoding, where they are not.

Theorem 2 Given a rate Rx > H(px), there exists a randomized streaming encoder and maximum
likelihood decoder pair (per Definition 2) such that for all E < EML(Rx) there is a constant K > 0
such that Pr[x̂n−∆ 6= x

n−∆] ≤ K exp{−∆EML(Rx)} for all n, ∆ ≥ 0 where

EML(Rx) = sup
0≤ρ≤1

ρRx − (1 + ρ) log

(

∑

x

px(x)
1

1+ρ

)

. (9)

Theorem 3 Given a rate Rx > H(px), there exists a randomized streaming encoder and universal
decoder pair (per Definition 2) such that for all E < EUN (Rx) there is a constant K > 0 such that
Pr[x̂n−∆ 6= x

n−∆] ≤ K exp{−∆E} for all n, ∆ ≥ 0 where

EUN (Rx) = inf
q

D(q‖px) + |Rx − H(q)|+, (10)

where q is an arbitrary probability distribution on X and where |z|+ = z if z ≥ 0 and |z|+ = 0 if
z < 0.

Remark: The error exponents of Theorems 2 and 3 both equal their respective random block-
coding exponents for ML and universal decoders. For example, compare (10) with (5). The main
difference in the formulation is that the error probability decays with delay ∆ rather than block
length N . Furthermore, it is known that (9) and (10) are equal — see [5] exercise 13 on page 44.
Such equality is required by the formal definition of a universal scheme, i.e., for the same source
statistics and coding rates, the universal decoder should asymptotically achieve the same error
exponent as the maximum likelihood decoder. See [12] for a detailed discussion of universal versus
maximum likelihood decoding in the context of channel coding.

3.4 Streaming distributed source coding with decoder side information

This section summarizes our results for distributed streaming source coding when the side infor-
mation is observed at the decoder, but not the encoder:

Theorem 4 Given a rate Rx > H(x |y), there exists a randomized encoder decoder pair (per Defi-
nition 2) such that for all E < EML,SI(Rx) there is a constant K > 0 such that Pr[x̂n−∆ 6= x

n−∆] ≤
K exp{−∆E} for all n, ∆ ≥ 0 where

EML,SI(Rx) = sup
0≤ρ≤1

ρRx − log
[

∑

y

[

∑

x

pxy (x, y)
1

1+ρ

]1+ρ]

. (11)

9

Theorem 5 Given a rate Rx > H(x |y), there exists a randomized encoder decoder pair (per Def-
inition 2) such that for all E < EUN,SI(Rx) there is a constant K > 0 such that Pr[x̂n−∆ 6=
x

n−∆] ≤ K exp{−∆E} for all n, ∆ ≥ 0 where

EUN,SI(Rx) = inf
x̃ ,ỹ

D(px̃ ,ỹ‖pxy) + |Rx − H(x̃ |ỹ)|+, (12)

and (x̃ , ỹ) are random variables with joint distribution px̃ ,ỹ , H(x̃ |ỹ) is their conditional entropy,
and where |z|+ = z if z ≥ 0 and |z|+ = 0 if z < 0.

Remark: Similar to the point-to-point case, the error exponents of Theorems 4 and 5 both equal
their respective random block-coding exponents. For example, compare (12) with (4). Similarly,
(11) and (12) can be shown to be equal.

3.5 Streaming Slepian-Wolf coding

In contrast to streaming point-to-point coding and streaming source coding with decoder side
information, the general case of streaming Slepian-Wolf coding with two distributed encoders results
in error exponents that differ from their block coding counterparts. In the streaming setting,
fundamentally different error events dominate as compared to the block setting.

Theorem 6 Let (Rx, Ry) be a rate pair such that Rx > H(x |y), Ry > H(y |x), Rx +Ry > H(x , y).
Then, there exists a randomized encoder pair and maximum likelihood decoder triplet (per Defini-
tion 2) that satisfies the following three decoding criteria.

(i) For all E < EML,SW,x(Rx, Ry), there is a constant K > 0 such that Pr[x̂n−∆ 6= x
n−∆] ≤

K exp{−∆E} for all n, ∆ ≥ 0 where

EML,SW,x(Rx, Ry) = min

{

inf
γ∈[0,1]

EML
x (Rx, Ry, γ), inf

γ∈[0,1]

1

1 − γ
EML

y (Rx, Ry, γ)

}

.

(ii) For all E < EML,SW,y(Rx, Ry) there is a constant K > 0 such that Pr[ŷn−∆ 6= y
n−∆] ≤

K exp{−∆E} for all n, ∆ ≥ 0 where

EML,SW,y(Rx, Ry) = min

{

inf
γ∈[0,1]

1

1 − γ
EML

x (Rx, Ry, γ), inf
γ∈[0,1]

EML
y (Rx, Ry, γ)

}

.

(iii) For all E < EML,SW,xy(Rx, Ry) there is a constant K > 0 such that Pr[(x̂n−∆, ŷn−∆) 6=
(xn−∆, yn−∆)] ≤ K exp{−∆E} for all n, ∆ ≥ 0 where

EML,SW,xy(Rx, Ry) = min

{

inf
γ∈[0,1]

EML
x (Rx, Ry, γ), inf

γ∈[0,1]
EML

y (Rx, Ry, γ)

}

.

In definitions (i)–(iii),

EML
x (Rx, Ry, γ) = supρ∈[0,1][γEx|y(Rx, ρ) + (1 − γ)Exy(Rx, Ry, ρ)]

EML
y (Rx, Ry, γ) = supρ∈[0,1][γEy|x(Rx, ρ) + (1 − γ)Exy(Rx, Ry, ρ)]

(13)

10

and

Exy(Rx, Ry, ρ) = ρ(Rx + Ry) − log
[

∑

x,y pxy (x, y)
1

1+ρ

]1+ρ

Ex|y(Rx, ρ) = ρRx − log
[

∑

y

[

∑

x pxy (x, y)
1

1+ρ

]1+ρ]

Ey|x(Ry, ρ) = ρRy − log
[

∑

x

[

∑

y pxy (x, y)
1

1+ρ

]1+ρ]

(14)

Theorem 7 Let (Rx, Ry) be a rate pair such that Rx > H(x |y), Ry > H(y |x), Rx +Ry > H(x , y).
Then, there exists a randomized encoder pair and universal decoder triplet (per Definition 2) that
satisfies the following three decoding criteria.

(i) For all E < EUN,SW,x(Rx, Ry), there is a constant K > 0 such that Pr[x̂n−∆ 6= x
n−∆] ≤

K exp{−∆E} for all n, ∆ ≥ 0 where

EUN,SW,x(Rx, Ry) = min

{

inf
γ∈[0,1]

EUN
x (Rx, Ry, γ), inf

γ∈[0,1]

1

1 − γ
EUN

y (Rx, Ry, γ)

}

. (15)

(ii) For all E < EUN,SW,y(Rx, Ry), there is a constant K > 0 such that Pr[ŷn−∆ 6= y
n−∆] ≤

K exp{−∆E} for all n, ∆ ≥ 0 where

EUN,SW,y(Rx, Ry) = min

{

inf
γ∈[0,1]

1

1 − γ
EUN

x (Rx, Ry, γ), inf
γ∈[0,1]

EUN
y (Rx, Ry, γ)

}

. (16)

(iii) For all E < EUN,SW,xy(Rx, Ry), there is a constant K > 0 such that Pr[(x̂n−∆, x̂n−∆) 6=
(xn−∆, yn−∆)] ≤ K exp{−∆E} for all n, ∆ ≥ 0 where

EUN,SW,xy(Rx, Ry) = min

{

inf
γ∈[0,1]

EUN
x (Rx, Ry, γ), inf

γ∈[0,1]
EUN

y (Rx, Ry, γ)

}

. (17)

In definitions (i)–(iii),

EUN
x (Rx, Ry, γ) = inf

x̃ ,ỹ ,x̄ ,ȳ
γD(px̃ ,ỹ‖pxy) + (1 − γ)D(px̄ ,ȳ‖pxy) + |γ[Rx − H(x̃ |ỹ)] + (1 − γ)[Rx + Ry − H(x̄ , ȳ)]|+

EUN
y (Rx, Ry, γ) = inf

x̃ ,ỹ ,x̄ ,ȳ
γD(px̃ ,ỹ‖pxy) + (1 − γ)D(px̄ ,ȳ‖pxy) + |γ[Ry − H(ỹ |x̃)] + (1 − γ)[Rx + Ry − H(x̄ , ȳ)]|+

(18)

where the random variables (x̃ , ỹ) and (x̄ , ȳ) have joint distributions px̃ ,ỹ and px̄ ,ȳ , respectively. The
function |z|+ = z if z ≥ 0 and |z|+ = 0 if z < 0.

Remark: Definitions (i) and (ii) in Theorems 6 and 7 concern individual decoding error events
which might be useful in applications where the x and y streams are decoded jointly, but utilized
individually. The more standard joint error event is given by (iii).

Remark: We can compare the joint error event for block and streaming Slepian-Wolf coding,
c.f. (17) with (2). The streaming exponent differs by the extra parameter γ that must be minimized
over. If the minimizing γ = 1, then the block and streaming exponents are the same. The
minimization over γ results from a fundamental difference in the types of error-causing events that
can occur in streaming Slepian-Wolf as compared to block Slepian-Wolf.

Remark: The error exponents of maximum likelihood and universal decoding in Theorems 6
and 7 are the same. However, because there are new classes of error events possible in streaming,
this needs proof. The equivalence is summarized in the following theorem.

11

Theorem 8 Let (Rx, Rx) be a rate pair such that Rx > H(x |y), Ry > H(y |x), and Rx + Ry >
H(x , y). Then,

EML,SW,x(Rx, Ry) = EUN,SW,x(Rx, Ry), (19)

and
EML,SW,x(Rx, Ry) = EUN,SW,x(Rx, Ry). (20)

Theorem 8 follows directly from the following lemma, shown in the appendix.

Lemma 1 For all γ ∈ [0, 1]

EML
x (Rx, Ry, γ) = EUN

x (Rx, Ry, γ), (21)

and
EML

y (Rx, Ry, γ) = EUN
y (Rx, Ry, γ). (22)

.

Remark: This theorem allows us to simplify notation. For example, we can define Ex(Rx, Ry, γ)
as Ex(Rx, Ry, γ) = EML

x (Rx, Ry, γ) = EUN
x (Rx, Ry, γ), and can similarly define Ey(Rx, Ry, γ). Fur-

ther, since the ML and universal exponents are the same for the whole rate region we can define
ESW,x(Rx, Ry) as ESW,x(Rx, Ry) = EML,SW,x(Rx, Ry) = EUN,SW,x(Rx, Ry), and can similarly de-
fine ESW,y(Rx, Ry).

4 Numerical Results

To build insight into the differences between the sequential error exponents of Theorem 2 - 8 and
block-coding error exponents, we give some examples of the exponents for binary sources.

For the point-to-point case, the error exponents of random sequential and block source coding
are identical everywhere in the achievable rate region as can be seen by comparing Theorem 3 and
Corollary 2. The same is true for source coding with decoder side information (cf. Theorem 5 and
Corollary 1). For distributed Slepian-Wolf source coding however, the sequential and block error
exponents can be different. The reason for the discrepancy is that a new type of error event can be
dominant in Slepian-Wolf source coding. This is reflected in Theorem 6 by the minimization over
γ. Example 2 illustrates the impact of this γ term.

For Slepian-Wolf source coding at very high rates, where Rx > H(x), the decoder can ignore
any information from encoder y and still decode x with with a positive error exponent. However,
the decoder could also choose to decode source x and y jointly. Fig 6.a and 6.b illustrate that
joint decoding may or surprisingly may not help decoding source x. This is seen by comparing the
error exponent when the decoder ignores the side information from encoder y (the dotted curves)
to the joint error exponent (the lower solid curves). It seems that when the rate for source y is low,
atypical behaviors of source y can cause joint decoding errors that end up corrupting x estimates.
This holds for both block and sequential coding.

12

-

6

Ry

Rx

. .0.49

. .0.67

Achievable
Region

Rx + Ry = H(x , y)

�

Figure 3: Rate region for the example 1 source, we focus on the error exponent on source x for
fixed encoder y rates: Ry = 0.49 and Ry = 0.67

4.1 Example 1: symmetric source with uniform marginals

Consider a symmetric source where |X | = |Y| = 2, pxy (0, 0) = 0.45, pxy (0, 1) = pxy (1, 0) = 0.05
and pxy (1, 1) = 0.45. This is a marginally-uniform source: x is Bernoulli(1/2), y is the output
from a BSC with input x , thus y is Bernoulli(1/2) as well. For this source H(x) = H(y) = log(2),
H(x |y) = H(y |x) = 0.32, H(x , y) = 1.02. The achievable rate region is the triangle shown in
Figure(3).

For this source, as will be shown later, the dominant sequential error event is on the diagonal
line in Fig 9. This is to say that:

ESW,x(Rx, Ry) = EBLOCK
SW,x (Rx, Ry) = EML

x (Rx, Ry, 0) = sup
ρ∈[0,1]

[Exy(Rx, Ry, ρ)]. (23)

Where EBLOCK
SW,x (Rx, Ry) = min{EML

x (Rx, Ry, 0), EML
x (Rx, Ry, 1)} as shown in [9].

Similarly for source y:

ESW,y(Rx, Ry) = EBLOCK
SW,y (Rx, Ry) = EML

y (Rx, Ry, 0) = sup
ρ∈[0,1]

[Exy(Rx, Ry, ρ)]. (24)

13

We first show that for this source ∀ρ ≥ 0, Ex|y(Rx, ρ) ≥ Exy(Rx, Ry, ρ). By definition:

Ex|y(Rx, ρ) − Exy(Rx, Ry, ρ) = ρRx − log
[

∑

y

[

∑

x

pxy (x, y)
1

1+ρ

]1+ρ]

−
(

ρ(Rx + Ry) − log
[

∑

x,y

pxy (x, y)
1

1+ρ

]1+ρ)

= −ρRy − log
[

2
[

∑

x

pxy (x, 0)
1

1+ρ

]1+ρ]

+ log
[

2
∑

x

pxy (x, 0)
1

1+ρ

]1+ρ

= −ρRy − log
[

2
]

+ log
[

2
]1+ρ

= ρ(log[2] − Ry)

≥ 0

The last inequality is true because we only consider the problem when Ry ≤ log |Y|. Otherwise,
y is better viewed as perfectly known side-information. Now

EML
x (Rx, Ry, γ) = sup

ρ∈[0,1]
[γEx|y(Rx, ρ) + (1 − γ)Exy(Rx, Ry, ρ)]

≥ sup
ρ∈[0,1]

[Exy(Rx, Ry, ρ)]

= EML
x (Rx, Ry, 0)

Similarly EML
y (Rx, Ry, γ) ≥ EML

y (Rx, Ry, 0) = EML
x (Rx, Ry, 0). Finally,

ESW,x(Rx, Ry) = min

{

inf
γ∈[0,1]

Ex(Rx, Ry, γ), inf
γ∈[0,1]

1

1 − γ
Ey(Rx, Ry, γ)

}

= EML
x (Rx, Ry, 0)

Particularly Ex(Rx, Ry, 1) ≥ Ex(Rx, Ry, 0), so

EBLOCK
SW,x (Rx, Ry) = min{EML

x (Rx, Ry, 0), EML
x (Rx, Ry, 1)}

= EML
x (Rx, Ry, 0)

The same proof holds for source y.
In Fig 4 we plot the joint sequential/block coding error exponents ESW,x(Rx, Ry) = EBLOCK

SW,x (Rx, Ry),
the error exponents are positive iff Rx > H(xy) − Ry = 1.02 − Ry.

4.2 Example 2: non-symmetric source

Consider a non-symmetric source where |X | = |Y| = 2, pxy (0, 0) = 0.1, pxy (0, 1) = pxy (1, 0) =
0.05 and pxy (1, 1) = 0.8. For this source H(x) = H(y) = 0.42, H(x |y) = H(y |x) = 0.29 and
H(x , y) = 0.71. The achievable rate region is shown in Fig 5. In Fig 6.a, 6.b, 6.c and 6.d, we
compare the joint sequential error exponent ESW,x(Rx, Ry) the joint block coding error exponent
EBLOCK

SW,x (Rx, Ry) = min{Ex(Rx, Ry, 0), Ex(Rx, Ry, 1)} as shown in [9] and the individual error

14

0 0.35 0.53 log(2)
0

0.05

0.1

0.15

0.2

0.25

E
rr

or
 e

xp
on

en
t f

or
 s

ou
rc

e
x

Rate of encoder x

R =0.67

R =0.49

y

y

Figure 4: Error exponents plot: ESW,x(Rx, Ry) plotted for Ry = 0.49 and Ry = 0.67
ESW,x(Rx, Ry) = EBLOCK

SW,x (Rx, Ry) = ESW,y(Rx, Ry) = EBLOCK
SW,y (Rx, Ry) and Ex(Rx) = 0

exponent for source X, Ex(Rx) as shown in Corollary 2. Notice that Ex(Rx) > 0 only if Rx > H(x).
In Fig 7, we compare the sequential error exponent for source y: ESW,y(Rx, Ry) and the block
coding error exponent for source y: EBLOCK

SW,y (Rx, Ry) = min{Ey(Rx, Ry, 0), Ey(Rx, Ry, 1)} and
Ey(Ry) which is a constant since we fix Ry.

For Ry = 0.35 as shown in Fig 6.a.b and 7.a.b, the difference between the block coding and
sequential coding error exponents is very small for both source x and y. More interestingly, as
shown in Fig 6.a, because the rate of source y is low, i.e. it is more likely to get a decoding error
due to the atypical behavior of source y. So as Rx increases, it is sometimes better to ignore source
y and decode x individually. This is evident as the dotted curve is above the solid curves.

For Ry = 0.49 as shown in Fig 6.c.d and 7.c.d, since the rate for source y is high enough, source
y can be decoded with a positive error exponent individually as shown in Fig 7.c. But as the rate
of source x increases, joint decoding gives a better error exponent. When Rx is very high, then we
observe the saturation of the error exponent on y as if source x is known perfectly to the decoder!
This is illustrated by the flat part of the solid curves in Fig 7.c.

5 Streaming point-to-point coding via sequential random binning

In this section we prove Theorems 2 and 3. While the emphasis of the paper is on distributed
source coding, the basic causal random binning ideas and analysis techniques can be more easily
developed in the point-to-point context.

15

-

6

Ry

Rx

. .

. .

0.35

0.49

Achievable
Region

Rx + Ry = H(x , y)

�

Figure 5: Rate region for the example 2 source, we focus on the error exponent on source x for
fixed encoder y rates: Ry = 0.35 and Ry = 0.49

5.1 Maximum-likelihood decoding

To show Theorems 2 and 3, we first develop the common core of the proof in the context of ML
decoding. The proof strategy is as follows. A decoding error can only occur if there is some
spurious source sequence x̃n that satisfies three conditions: (i) it must be in the same bin (share
the same parities) as xn, i.e., x̃n ∈ Bx(xn), (ii) it must be more likely than the true sequence, i.e.,
px(x̃

n) > px(x
n), and (iii) x̃l 6= xl for some l ≤ n − ∆.

The error probability is

Pr[x̂n−∆ 6= x
n−∆] =

∑

xn

Pr[x̂n−∆ 6= xn−∆|xn = xn]px(x
n) (25)

=
∑

xn

n−∆
∑

l=1

Pr
[

∃ x̃n ∈ Bx(xn) ∩ Fn(l, xn) s.t. px(x̃
n) ≥ px(x

n)
]

px(x
n) (26)

=
n−∆
∑

l=1

{

∑

xn

Pr
[

∃ x̃n ∈ Bx(xn) ∩ Fn(l, xn) s.t. px(x̃
n) ≥ px(x

n)
]

px(x
n)
}

=
n−∆
∑

l=1

pn(l). (27)

After conditioning on the realized source sequence in (25), the remaining randomness is only in
the binning. In (26) we decompose the error event into a number of mutually exclusive events (see
Fig 8) by partitioning all source sequences x̃n into sets Fn(l, xn) defined by the time l of the first
sample in which they differ from the realized source xn,

Fn(l, xn) = {x̃n ∈ X n|x̃l−1 = xl−1, x̃l 6= xl}, (28)

16

0 0.36 log(2)
0

0.05

0.1

0.15

0.2

(a)

R = 0.35

0 log(2)
0

0.1

0.2

0.3

0.4

0.5

(b)

0 0.29 0.42 log(2)
0

0.05

0.1

0.15

0.2

(c)

0 log(2)
0

0.1

0.2

0.3

0.4

0.5

(d)

R

 x

R

 x

R

 x

R

 x

y
R = 0.49

y

Figure 6: Error exponents plot for source x for fixed Ry as Rx varies:
Ry = 0.35:
(a) Solid curve: ESW,x(Rx, Ry), dashed curve EBLOCK

SW,x (Rx, Ry) and dotted curve: Ex(Rx), notice

that ESW,x(Rx, Ry) ≤ EBLOCK
SW,x (Rx, Ry) but the difference is small.

(b) 10 log10(
EBLOCK

SW,x (Rx,Ry)

ESW,x(Rx,Ry)). This shows the difference is there at high rates.

Ry = 0.49:
(c) Solid curve ESW,x(Rx, Ry), dashed curve EBLOCK

SW,x (Rx, Ry) and dotted curve: Ex(Rx), again

ESW,x(Rx, Ry) ≤ EBLOCK
SW,x (Rx, Ry) but the difference is extremely small.

(d) 10 log10(
EBLOCK

SW,x (Rx,Ry)

ESW,x(Rx,Ry)). This shows the difference is there at intermediate low rates.

17

0 0.36 log(2)
0

0.01

0.02

0.03

0.04

0.05

0.06

(a)

R = 0.35

0 log(2)
0

0.05

0.1

0.15

0.2

0.25

(b)

0 0.29 log(2)
0

0.01

0.02

0.03

0.04

0.05

0.06

(c)

R = 0.49

log(2)
0

0.05

0.1

0.15

0.2

0.25

R

 x

R

 x

R

 x

R

 x

infinity

y y

E (R)

ML y

E (R)
 ML y

(d)

Figure 7: Error exponents plot for source y for fixed Ry as Rx varies:
Ry = 0.35:
(a) Solid curve: ESW,y(Rx, Ry) and dashed curve EBLOCK

SW,y (Rx, Ry), ESW,y(Rx, Ry) ≤

EBLOCK
SW,y (Rx, Ry), the difference is extremely small. Ey(Ry) is 0 because Ry = 0.35 < H(y).

(b) 10 log10(
EBLOCK

SW,y (Rx,Ry)

ESW,y(Rx,Ry)). This shows the two exponents are not identical everywhere.

Ry = 0.49:
(c) Solid curves: ESW,y(Rx, Ry), dashed curve EBLOCK

SW,y (Rx, Ry) and ESW,y(Rx, Ry) ≤

EBLOCK
SW,y (Rx, Ry) and Ey(Ry) is constant shown in a dotted line.

(d) 10 log10(
EBLOCK

SW,y (Rx,Ry)

ESW,y(Rx,Ry)). Notice how the gap goes to infinity when we leave the Slepian-Wolf

region.

18

- l
1 nn − ∆

Figure 8: Decoding error probability at n − ∆ can be union bounded by the sum of probabilities
of first decoding error at l, 1 ≤ l ≤ n − ∆. The dominant error event pn(n − ∆) is the one in the
highlighted oval(shortest delay).

and define Fn(n + 1, xn) = {xn}. Finally, in (27) we define

pn(l) =
∑

xn

Pr
[

∃ x̃n ∈ Bx(xn) ∩ Fn(l, xn) s.t. px(x̃
n) ≥ px(x

n)
]

px(x
n). (29)

We now upper bound pn(l) using a Chernoff bound argument similar to [9].

Lemma 2 pn(l) ≤ exp{−(n − l + 1)EML(Rx)}.

Proof:

pn(l) =
∑

xn

Pr
[

∃ x̃n ∈ Bx(xn) ∩ Fn(l, xn) s.t. px(x̃
n) ≥ px(x

n)
]

px(x
n)

≤
∑

xn

min
[

1,
∑

x̃n ∈ Fn(l, xn)s.t.
px(x

n) ≤ px(x̃
n)

Pr[x̃n ∈ Bx(xn)]
]

px(x
n) (30)

=
∑

xl−1,xn
l

min
[

1,
∑

x̃n
l s.t.

px (x
n
l) < px (x̃

n
l)

exp{−(n − l + 1)Rx}
]

px(x
l−1)px(x

n
l) (31)

=
∑

xn
l

min
[

1,
∑

x̃n
l s.t.

px (x
n
l) < px (x̃

n
l)

exp{−(n − l + 1)Rx}
]

px(x
n
l)

=
∑

xn
l

min
[

1,
∑

x̃n
l

1[px(x̃
n
l) > px(x

n
l)] exp{−(n − l + 1)Rx}

]

px(x
n
l) (32)

≤
∑

xn
l

min



1,
∑

x̃n
l

min

[

1,
px(x̃

n
l)

px(xn
l)

]

exp{−(n − l + 1)Rx}



 px(x
n
l)

≤
∑

xn
l





∑

x̃n
l

[

px(x̃
n
l)

px(xn
l)

]
1

1+ρ

exp{−(n − l + 1)Rx}





ρ

px(x
n
l) (33)

=
∑

xn
l

px(x
n
l)

1
1+ρ





∑

x̃n
l

[px(x̃
n
l)]

1
1+ρ





ρ

exp{−(n − l + 1)ρRx}

=

[

∑

x

px(x)
1

1+ρ

](n−l+1) [
∑

x

px(x)
1

1+ρ

](n−l+1)ρ

exp{−(n − l + 1)ρRx} (34)

19

=

[

∑

x

px(x)
1

1+ρ

](n−l+1)(1+ρ)

exp{−(n − l + 1)ρRx}

= exp

{

−(n − l + 1)

[

ρRx − (1 + ρ) ln

(

∑

x

px(x)
1

1+ρ

)]}

. (35)

In (30) the union bound is applied. In (31) we use the fact that after the first symbol in
which two sequences differ, the remaining parity bits are independent, and the fact that only the
likelihood of the differing suffixes matter. That is, if xl−1 = x̃l−1, then px(x

n) < px(x̃
n) if and only

if px(x
n
l) < px(x̃

n
l). In (32) 1(·) is the indicator function, taking the value one if the argument is

true, and zero if it is false. We get (33) by limiting ρ to the range 0 ≤ ρ ≤ 1 since the arguments
of the minimization are both positive and upper-bounded by one. We use the iid property of the
source, exchanging sums and products to get (34). The bound in (35) is true for all ρ in the range
0 ≤ ρ ≤ 1. Maximizing (35) over ρ gives pn(l) ≤ exp{−(n − l + 1)EML(Rx)} where EML(Rx)} is
defined in Theorem 2, in particular (9). �

Using Lemma 2 in (27) gives

Pr[x̂n−∆ 6= x
n−∆] ≤

n−∆
∑

l=1

exp{−(n − l + 1)EML(Rx)} (36)

=

n−∆
∑

l=1

exp{−(n − l + 1 − ∆)EML(Rx)} exp{−∆EML(Rx)}

≤K0 exp{−∆EML(Rx)} (37)

In (37) we pull out the exponent in ∆. The remaining summation is a sum over decaying exponen-
tials, can thus can be bounded by some constant K0. This proves Theorem 2.

5.2 Error events and sequential decoding

To better understand the dominant error event in the sum (36), consider constructing the ML
estimate in a symbol-by-symbol sequential manner. The decoder starts by first identifying as
candidates those sequences whose parities match the received bit stream up to time n. If the
encoder observes the length-n sequence x = x, this is {x̄ s.t. x̄ ∈ Bx(x)}. The lth symbol of the
estimate, x̂l, is defined as

x̂l = wl where w = arg max
x̄∈Bx(x) s.t. x̄l−1=x̂l−1

px
n
l
(x̄n

l). (38)

The estimate thus produced is the maximum likelihood estimate because the decision regarding
which pair of sequences is more likely depends only on which one’s suffix is more likely.

This is a decision-directed decoder. Semi-hard12 estimate are made sequentially for each symbol.
These estimates are then fixed, and taken as true when estimating subsequent symbols. Each such
hard-decision is analogous to a classic block-coding Slepian-Wolf problem. This is because we only
need to decide between sequences that start to differ in the symbol we are trying to estimate—
previous symbols have been fixed, and subsequent symbols are not yet in question. Thus, all

12Decisions are only “hard” for computational time. As soon as the next set of parities arrive and real-time
advances, all the computations are done again.

20

sequences that could lead to different estimates of symbol l are binned independently for the
remainder of the block. This is why the error exponent we derive in (37) equals Gallager’s block
coding exponent [9]. Since the error exponent for each block-decoding problem is the same, the
dominant error event is the hard-decision with the shortest block-length. This symbol is the last
symbol we need to estimate. Its block-length equals the estimation delay ∆. We revisit this story
in Section 7 when we consider Slepian-Wolf coding. In that context the dominant error event has
some features that do not arise in block coding.

5.3 Universal decoding

In this section we prove Theorem 3. We use the sequential decoder introduced in Section 5.2, but
with minimum-entropy, rather than maximum-likelihood, decoding. That is,

x̂l = wl[l] where wn[l] = arg min
x̄n∈Bx(xn) s.t. x̄l−1=x̂l−1

H(x̄n
l). (39)

We term this a minimum suffix-entropy decoder. The reason for using this decoder instead of the
standard minimum block-entropy decoder is that the block-entropy decoder has a polynomial term
in n (resulting from summing over the type classes) that multiplies the exponential decay in ∆.
For n large, this polynomial can dominate. Using the minimum suffix-entropy decoder results in a
polynomial term in ∆.

With this decoder, errors can only occur if there is some sequence x̃n such that (i) x̃n ∈ Bx(xn),
(ii) x̃

l−1 = x
l−1, and x̃l 6= xl, for some l ≤ n − ∆, and (iii) the empirical suffix entropy of x̃n

l

is such that H(x̃n
l) < H(xn

l). Building on the common core of the achievability (25)–(27) with
the substitution of universal decoding in the place of maximum likelihood results in the following
definition of pn(l) (cf. (40) with (29),

pn(l) =
∑

xn

Pr
[

∃ x̃n ∈ Bx(xn) ∩ Fn(l, xn) s.t. H(x̃n
l) ≤ H(xn

l)
]

px(x
n) (40)

The following lemma gives a bound on pn(l).

Lemma 3 For minimum suffix-entropy decoding, pn(l) ≤ (n− l+2)2|X | exp{−(n− l+1)EUN (Rx)}.

Proof: We define Pn−l to be the type of length-(n − l + 1) sequence xn
l , and TP n−l to be the

corresponding type class so that xn
l ∈ TP n−l . Analogous definitions hold for P̃n−l and x̃n

l . We

21

rewrite the constraint H(x̃n
l) < H(x̃n

l) as H(P̃n−l) < H(Pn−l). Thus,

pn(l) =
∑

xn

Pr
[

∃ x̃n ∈ Bx(xn) ∩ Fn(l, xn) s.t. H(x̃n
l) ≤ H(xn

l)
]

px(x
n)

≤
∑

xn
1

min
[

1,
∑

x̃n
1 ∈ Fn(l, xn) s.t.
H(x̃n

l) ≤ H(xn
l)

Pr[x̃n
1 ∈ Bx(xn

1)]
]

px(x
n)

=
∑

xl−1
1 ,xn

l

min
[

1,
∑

x̃n
l s.t.

H(x̃n
l) ≤ H(xn

l)

exp{−(n − l + 1)Rx}
]

px(x
l−1)px(x

n
l)

=
∑

xn
l

min
[

1,
∑

x̃n
l s.t.

H(x̃n
l) ≤ H(xn

l)

exp{−(n − l + 1)Rx}
]

px(x
n
l) (41)

=
∑

P n−l

∑

xn
l
∈T

Pn−l

min
[

1,
∑

P̃ n−l s.t.

H(P̃ n−l) ≤ H(P n−l)

∑

x̃n
l
∈T

P̃n−l

exp{−(n − l + 1)Rx}
]

px(x
n
l) (42)

≤
∑

P n−l

∑

xn
l+1∈TPn−l

min
[

1, (n − l + 2)|X | exp{−(n − l)[Rx − H(Pn−l)]}
]

px(x
n
l) (43)

≤(n − l + 2)|X |
∑

P n−l

∑

xn
l
∈T

Pn−l

exp{−(n − l + 1)[|Rx−H(Pn−l)|+]}

exp{−(n − l + 1)[D(Pn−l‖px) + H(Pn−l)]} (44)

≤(n − l + 2)|X |
∑

P n−l

exp{−(n − l + 1) inf
q

[D(q‖px) + |Rx − H(q)|+]} (45)

≤(n − l + 2)2|X | exp{−(n − l + 1)EUN (Rx)} (46)

In going from (42) to (43) first note that the argument of the inner-most summation (over x̃n
l) does

not depend on x. We then use the following relations: (i)
∑

x̃n
l
∈T

P̃n−l
= |TP̃ n−l | ≤ exp{(n − l +

1)H(P̃n−l)}, which is a standard bound on the size of the type class, (ii) H(P̃n−l) ≤ H(Pn−l) by
the minimum-suffix-entropy decoding rule, and (iii) the polynomial bound on the number of types,
|{P̃n−l}| ≤ (n − l + 2)|X |. In (44) we recall the function definition | · |+ , max{0, ·}. We pull the
polynomial term out of the minimization and use px(x

n
l) = exp{−(n−l+1)[D(Pn−l‖px)+H(Pn−l)]}

for all px(x
n
l) ∈ TP n−l . It is also in (44) that we see why we use a minimum suffix-entropy decoding

rule instead of a minimum entropy decoding rule. If we had not marginalized out over xl−1 in
(41) then we would have a polynomial term out front in terms of n rather than n − l, which for
large n could dominate the exponential decay in n− l. As the expression in (45) no longer depends
on xn

l , we simplify by using |TP n−l | ≤ exp{(n − l + 1)H(Pn−l)}. In (46) we use the definition of
the universal error exponent EUN (Rx) from (10) of Theorem 3, and the polynomial bound on the
number of types. �

Lemma 3 and Pr[x̂n−∆ 6= x
n−∆] ≤

∑n−∆
l=1 pn(l) imply that:

Pr[x̂n−∆ 6= x
n−∆] ≤

n−∆
∑

l=1

(n − l + 2)2|X | exp{−(n − l + 1)EUN (Rx)}

≤
n−∆
∑

l=1

K1 exp{−(n − l + 1)[EUN (Rx) − γ]} (47)

22

≤K2 exp{−∆[EUN (Rx) − γ]} (48)

In (47) we incorporate the polynomial into the exponent. Namely, for all a > 0, b > 0, there exists
a C such that za ≤ C exp{b(z−1)} for all z ≥ 1. We then make explicit the delay-dependent term.
Pulling out the exponent in ∆, the remaining summation is a sum over decaying exponentials, and
can be bounded by a constant. Together with K1, this gives the constant K2 in (48). This proves
Theorem 3. Note that the γ in (48) does not enter the optimization because γ > 0 can be picked
equal to any constant. The choice of γ effects the constant K in Theorem 3.

6 Streaming source coding with side information at the decoder

If a random sequence y
n, related to the source x

n through a discrete memoryless channel, is observed
at the decoder, then this side information can be used to reduce the rate of the source code. In this
model px,y(x

n, yn) =
∏n

i=1 pxy (xi, yi) =
∏n

i=1 px |y (xi|yi)py (yi). The source x
n is observed at the

encoder, and the decoder, which observes y
n and a bit stream from the encoder, wants to estimate

each source symbol xi with a probability of error that decreases exponentially in the decoding delay
∆.

We can apply the analysis of Section 5 to this problem with a few minor modifications. For
ML decoding, we need to pick the sequence with the maximum conditional probability given y

n.
The error exponent can be derived using a similar Chernoff bounding argument as in section 5.
For universal decoding, the only change is that we now use a minimum suffix conditional-entropy
decoder that compares sequence pairs (x̄n, yn) and (¯̄xn, yn). In terms of the analysis, one change
enters in (25) where we must also sum over the possible side information sequences. And in (42)
the entropy condition in the summation over x̃ changes to H(x̃n

l+1|y
n
l+1) < H(xn

l+1|y
n
l+1) (or the

equivalent type notation). Since there is no ambiguity in the side information, since y
n is observed

at the decoder, this condition is equivalent to H(x̃n
l+1, y

n
l+1) < H(xn

l+1, y
n
l+1).

These results are summarized in Theorems 4 and 5. We do not include the full derivation of
these theorems as no new ideas are required.

7 Streaming Slepian-Wolf source coding

In this section we provide the proofs of Theorems 6 and 7, which consider the two-user13 Slepian-
Wolf problem. As with the proofs of Theorems 2 and 3 in Sections 5.1 and 5.3, we start by developing
the common core of the proof in the context of maximum likelihood decoding. This allows us to
develop the results for universal decoding more quickly and transparently. Furthermore, as shown
in Theorem 8, maximum likelihood decoding and universal decoding provide the same reliability
with delay.

7.1 Maximum Likelihood Decoding

In Theorems 6 and 7 three error events are considered: (i) Pr[xn−∆ 6= x̂
n−∆], (ii) Pr[yn−∆ 6= ŷ

n−∆],
and (iii) Pr[(xn−∆, yn−∆) 6= (x̂n−∆, ŷn−∆)]. We develop the error exponent for case (i). The error
exponent for case (ii) follows from a similar derivation, and that of case (iii) from an application

13The multiuser case is essentially the same, just with a lot more notation and minimization parameters γ1, γ2,

23

of the union bound resulting in an exponent that is the minimum of the exponents of cases (i) and
(ii).

To lead to the decoding error Pr[xn−∆ 6= x̂
n−∆] there must be some spurious source pair (x̃n, ỹn)

that satisfies three conditions: (i) x̃n ∈ Bx(xn) and ỹn ∈ By(y
n), (ii) it must be more likely than

the true pair px,y(x̃
n, ỹn) > px,y(x

n, yn), and (iii) x̃l 6= xl for some l ≤ n − ∆.
The error probability is

Pr[x̂n−∆ 6= x
n−∆] =

∑

xn,yn

Pr[x̂n−∆ 6= xn−∆|xn = xn, yn = yn]px,y(x
n, yn)

≤
∑

xn,yn

px,y(x
n, yn)

{

n−∆
∑

l=1

n+1
∑

k=1

Pr
[

∃ (x̃n, ỹn) ∈ Bx(xn) × By(y
n) ∩ Fn(l, k, xn, yn) s.t. px,y(x̃

n, ỹn) ≥ px,y(x
n, yn)

]

}

(49)

=

n−∆
∑

l=1

n+1
∑

k=1

{

∑

xn,yn

px,y(x
n, yn)

Pr
[

∃ (x̃n, ỹn) ∈ Bx(xn) × By(y
n) ∩ Fn(l, k, xn, yn) s.t. px,y(x̃

n, ỹn) ≥ px,y(x
n, yn)

]

}

=

n−∆
∑

l=1

n+1
∑

k=1

pn(l, k). (50)

In (49) we decompose the error event into a number of mutually exclusive events by partitioning
all source pairs (x̃n, ỹn) into sets Fn(l, k, xn, yn) defined by the times l and k at which x̃n and ỹn

diverge from the realized source sequences. The set Fn(l, k, xn, yn) is defined as

Fn(l, k, xn, yn) = {(x̄n, ỹn) ∈ X n × Yn s.t. x̄l−1 = xl−1, x̄l 6= xl, ȳ
k−1 = yk−1, ȳk 6= yk}, (51)

In contrast to streaming point-to-point or side-information coding (cf. (51) with (28)), the partition
is now doubly-indexed. To find the dominant error event, we must search over both indices. Having
two dimensions to search over results in an extra minimization when calculating the error exponent
(and leads to the infimum over γ in Theorem 6).

Finally, to get (50) we define pn(l, k) as

pn(l, k) =
∑

xn,yn

px,y(x
n, yn) Pr

[

∃ (x̃n, ỹn) ∈ Bx(xn)×By(y
n)∩Fn(l, k, xn, yn) s.t. px,y(x̃

n, ỹn) ≥ px,y(x
n, yn)

]

.

The following lemma provides an upper bound on pn(l, k):

Lemma 4
pn(l, k) ≤ exp{−(n − l + 1)Ex(Rx, Ry,

k−l
n−l+1)} if l ≤ k,

pn(l, k) ≤ exp{−(n − k + 1)Ey(Rx, Ry,
l−k

n−k+1)} if l ≥ k,
(52)

where Ex(Rx, Ry, γ) and Ey(Rx, Ry, γ) are defined in (13) and (14) respectively. Notice that
l, k ≤ n, for l ≤ k: k−l

n−l+1 ∈ [0, 1] serves as γ in the error exponent Ex(Rx, Ry, γ). Similarly for
l ≥ k.

24

Proof: The bound depends on whether l ≤ k or l ≥ k. Consider the case for l ≤ k,

pn(l, k) =
∑

xn,yn

px,y(x
n, yn) Pr[∃ (x̃n, ỹn) ∈ Bx(xn) × By(y

n) ∩ Fn(l, k, xn, yn) s.t. px,y(x
n, yn) < px,y(x̃

n, ỹn)]

≤
∑

xn,yn

min
[

1,
∑

(x̃n, ỹn) ∈ Fn(l, k, xn, yn)
px,y(x

n, yn) < px,y(x̃
n, ỹn)

Pr[x̃n ∈ Bx(xn), ỹn ∈ By(y
n)]
]

px,y(x
n, yn) (53)

≤
∑

xn
l
,yn

l

min
[

1,
∑

(x̃n
l , ỹn

l) s.t. ỹk−1 = yk−1

px,y(x
n
l , yn

l) < px,y(x̃
n
l , ỹn

l)

exp{−(n − l + 1)Rx − (n − k + 1)Ry}
]

px,y(x
n
l , yn

l) (54)

=
∑

xn
l
,yn

l

min
[

1,
∑

x̃n
l
,ỹn

k

exp{−(n − l + 1)Rx − (n − k + 1)Ry}

1[px,y(x̃
k−1
l , yk−1

l)px,y(x̃
n
k , ỹn

k) > px,y(x
n
l , yn

l)]
]

px,y(x
n
l , yn

l)

≤
∑

xn
l
,yn

l

min

[

1,
∑

x̃n
l
,ỹn

k

exp{−(n − l + 1)Rx − (n − k + 1)Ry}

min

[

1,
px,y(x̃

k−1
l , yk−1

l)px,y(x̃
n
k , ỹn

k)

px,y(xn
l , yn

l)

]]

px,y(x
n
l , yn

l)

≤
∑

xn
l
,yn

l

[

∑

x̃n
l
,ỹn

k

e−(n−l+1)Rx−(n−k+1)Ry

[

px,y(x̃
k−1
l , yk−1

l)px,y(x̃
n
k , ỹn

k)

px,y(xn
l , yn

l)

]
1

1+ρ
]ρ

px,y(x
n
l , yn

l) (55)

= e−(n−l+1)ρRx−(n−k+1)ρRy
∑

xn
l
,yn

l

[

∑

x̃n
l
,ỹn

k

[px,y(x̃
k−1
l , yk−1

l)px,y(x̃
n
k , ỹn

k)]
1

1+ρ

]ρ

px,y(x
n
l , yn

l)
1

1+ρ

= e−(n−l+1)ρRx−(n−k+1)ρRy
∑

yk−1
l

[

∑

xk−1
l

px,y(x
k−1
l , yk−1

l)
1

1+ρ

][

∑

x̃k−1
l

px,y(x̃
k−1
l , yk−1

l)
1

1+ρ

]ρ

[

∑

x̃n
k
,ỹn

k

px,y(x̃
n
k , ỹn

k)
1

1+ρ

]ρ ∑

xn
k
,yn

k

px,y(x
n
k , yn

k)
1

1+ρ

= e−(n−l+1)ρRx−(n−k+1)ρRy

[

∑

yk−1
l

[

∑

xk−1
l

px,y(x
k−1
l , yk−1

l)
1

1+ρ

]1+ρ
]

[

∑

xn
k
,yn

k

px,y(x
n
k , yn

k)
1

1+ρ

]1+ρ

= e−(n−l+1)ρRx−(n−k+1)ρRy

[

∑

y

[

∑

x

px ,y (x, y)
1

1+ρ

]1+ρ
]k−l

[

∑

x,y

px ,y (x, y)
1

1+ρ

](1+ρ)(n−k+1)

(56)

= exp

{

−(k − l)

[

ρRx − log
[

∑

y

[

∑

x

px ,y (x, y)
1

1+ρ

]1+ρ]
]}

exp

{

−(n − k + 1)

[

ρ(Rx + Ry) − (1 + ρ) log
[

∑

x,y

px ,y (x, y)
1

1+ρ

]

]}

25

= exp
{

−(k − l)Ex|y(Rx, ρ) − (n − k + 1)Exy(Rx, Ry, ρ)
}

(57)

= exp

{

−(n − l + 1)
[k − l

n − l + 1
Ex|y(Rx, ρ) +

n − k + 1

n − l + 1
Exy(Rx, Ry, ρ)

]

}

(58)

≤ exp

{

−(n − l + 1) sup
ρ∈[0,1]

[k − l

n − l + 1
Ex|y(Rx, ρ) +

n − k + 1

n − l + 1
Exy(Rx, Ry, ρ)

]

}

(59)

= exp

{

−(n − l + 1)EML
x

(

Rx, Ry,
k − l

n − l + 1

)}

= exp

{

−(n − l + 1)Ex(Rx, Ry,
k − l

n − l + 1
)

}

.

(60)

In (53) we explicitly indicate the three conditions that a suffix pair (x̃n
l , ỹn

k) must satisfy to
result in a decoding error. In (54) we sum out over the common prefixes (xl−1, yl−1), and use the
fact that the random binning is done independently at each encoder, see Definition. 2. We get (55)
by limiting ρ to the interval 0 ≤ ρ ≤ 1, as in (33). Getting (56) from (55) follows by a number
of basic manipulations. In (56) we get the single letter expression by again using the memoryless
property of the sources. In (57) we use the definitions of Ex|y and Exy from (14) of Theorem 6.
Noting that the bound holds for all ρ ∈ [0, 1] optimizing over ρ results in (59). Finally, using the
definition of (13) and the remark following Theorem 8 that the maximum-likelihood and universal
exponents are equal gives (60). The bound on pn(l, k) when l > k, is developed in an analogous
fashion. �

We use Lemma 4 together with (50) to bound Pr[x̂n−∆ 6= x
n−∆] for two distinct cases. The first,

simpler case, is when infγ∈[0,1] Ey(Rx, Ry, γ) > infγ∈[0,1] Ex(Rx, Ry, γ). To bound Pr[x̂n−∆ 6= x
n−∆]

in this case, we split the sum over the pn(l, k) into two terms, as visualized in Fig 9. There are
(n + 1) × (n − ∆) such events to account for (those inside the box). The probability of the event
within each oval are summed together to give an upper bound on Pr[x̂n−∆ 6= x

n−∆]. We add extra
probabilities outside of the box but within the ovals to make the summation symmetric thus simpler.
Those extra error events do not impact the error exponent because infγ∈[0,1] Ey(Rx, Ry, ρ, γ) ≥

26

infγ∈[0,1] Ex(Rx, Ry, ρ, γ). The possible dominant error events are highlighted in Figure 9 . Thus,

Pr[x̂n−∆ 6= x
n−∆] ≤

n−∆
∑

l=1

n+1
∑

k=l

pn(l, k) +
n−∆
∑

k=1

n+1
∑

l=k

pn(l, k) (61)

≤
n−∆
∑

l=1

n+1
∑

k=l

exp{−(n − l + 1) inf
γ∈[0,1]

Ex(Rx, Ry, γ)} +
n−∆
∑

k=1

n+1
∑

l=k

exp{−(n − k + 1) inf
γ∈[0,1]

Ey(Rx, Ry, γ)}

(62)

=
n−∆
∑

l=1

[

(n − l + 2) exp{−(n − l + 1) inf
γ∈[0,1]

Ex(Rx, Ry, γ)}

+

n−∆
∑

k=1

[

(n − k + 2) exp{−(n − k + 1) inf
γ∈[0,1]

Ey(Rx, Ry, γ)}

≤ 2
n−∆
∑

l=1

[

(n − l + 2) exp{−(n − l + 1) inf
γ∈[0,1]

Ex(Rx, Ry, γ)} (63)

≤
n−∆
∑

l=1

C1 exp{−(n − l + 2)[inf
γ∈[0,1]

Ex(Rx, Ry, γ) − α]} (64)

≤ C2 exp{−∆[inf
γ∈[0,1]

Ex(Rx, Ry, γ) − α]} (65)

Equation (61) follows directly from (50), in the first term l ≤ k, in the second term l ≥
k. In (62), we use Lemma 4. In (63) we use the assumption that infγ∈[0,1] Ey(Rx, Ry, γ) >
infγ∈[0,1] Ex(Rx, Ry, γ). In (64) the α > 0 results from incorporating the polynomial into the
first exponent, and can be chosen as small as desired. Combining terms and summing out the
decaying exponential yield the bound (65).

The second, more involved case, is when infγ∈[0,1] Ey(Rx, Ry, ρ, γ) < infγ∈[0,1] Ex(Rx, Ry, ρ, γ).

To bound Pr[x̂n−∆ 6= x
n−∆], we could use the same bounding technique used in the first case.

This gives the error exponent infγ∈[0,1] Ey(Rx, Ry, γ) which is generally smaller than what we can
get by dividing the error events in a new scheme as shown in Figure 10. In this situation we
split (50) into three terms, as visualized in Fig 10. Just as in the first case shown in Fig 9, there are
(n+1)× (n−∆) such events to account for (those inside the box). The error events are partitioned
into 3 regions. Region 2 and 3 are separated by k∗(l) using a dotted line. In region 3, we add extra
probabilities outside of the box but within the ovals to make the summation simpler. Those extra
error events do not affect the error exponent as shown in the proof. The possible dominant error
events are highlighted shown in Fig 10. Thus,

Pr[x̂n−∆ 6= x
n−∆] ≤

n−∆
∑

l=1

n+1
∑

k=l

pn(l, k) +
n−∆
∑

l=1

l−1
∑

k=k∗(l)

pn(l, k) +
n−∆
∑

l=1

k∗(l)−1
∑

k=1

pn(l, k) (66)

Where
∑0

k=1 pk = 0. The lower boundary of Region 2 is k∗(l) ≥ 1 as a function of n and l:

k∗(l) = max

{

1, n + 1 − ⌈
infγ∈[0,1] Ex(Rx, Ry, γ)

infγ∈[0,1] Ey(Rx, Ry, γ)
⌉(n + 1 − l)

}

= max {1, n + 1 − G(n + 1 − l)}

(67)

27

-

6

k

l

n
+

1
n
−

∆

In
d
ex

at
w

h
ic

h
y

n
an

d
ỹ

n
fi
rs

t
d
iv

er
ge

Index at which x
n and x̃

n first diverge

n + 1n − ∆

Figure 9: Two dimensional plot of the error probabilities pn(l, k), corresponding to error events
(l, k), contributing to Pr[x̂n−∆ 6= x

n−∆] in the situation where infγ∈[0,1] Ey(Rx, Ry, ρ, γ) ≥
infγ∈[0,1] Ex(Rx, Ry, ρ, γ).

28

-

6

k

l

n
+

1
n
−

∆

In
d
ex

at
w

h
ic

h
y

n
an

d
ŷ

n
fi
rs

t
d
iv

er
ge

Index at which x
n and x̂

n first diverge

k∗(n − ∆) − 1

n + 1n − ∆

Region 1

Region 2 Region 3

k∗(l)�

Figure 10: Two dimensional plot of the error probabilities pn(l, k), corresponding to error
events (l, k), contributing to Pr[x̂n−∆ 6= x

n−∆] in the situation where infγ∈[0,1] Ey(Rx, Ry, γ) <
infγ∈[0,1] Ex(Rx, Ry, γ).

where we use G to denote the ceiling of the ratio of exponents. Note that when infγ∈[0,1] Ey(Rx, Ry, γ) >
infγ∈[0,1] Ex(Rx, Ry, γ) then G = 1 and region two of Fig. 10 disappears. In other words, the middle
term of (66) equals zero. This is the first case considered. We now consider the cases when G ≥ 2
(because of the ceiling function G is a positive integer).

The first term of (66), i.e., region one in Fig. 10 where l ≤ k, is bounded in the same way that
the first term of (61) is, giving

n−∆
∑

l=1

n+1
∑

k=l

pn(l, k) ≤ C2 exp{−∆[inf
γ∈[0,1]

Ex(Rx, Ry, γ) − α]}. (68)

In Fig. 10, region two is upper bounded by the 45-degree line, and lower bounded by k∗(l). The

29

second term of (66), corresponding to this region where l ≥ k,

n−∆
∑

l=1

l−1
∑

k=k∗(l)

pn(l, k) ≤
n−∆
∑

l=1

l−1
∑

k=k∗(l)

exp{−(n − k + 1)Ey(Rx, Ry,
l − k

n − k + 1
)}

=
n−∆
∑

l=1

l−1
∑

k=k∗(l)

exp{−(n − k + 1)
n − l + 1

n − l + 1
Ey(Rx, Ry,

l − k

n − k + 1
)} (69)

≤
n−∆
∑

l=1

l−1
∑

k=k∗(l)

exp{−(n − l + 1) inf
γ∈[0,1]

1

1 − γ
Ey(Rx, Ry, γ)} (70)

=
n−∆
∑

l=1

(l − k∗(l)) exp{−(n − l + 1) inf
γ∈[0,1]

1

1 − γ
Ey(Rx, Ry, γ)} (71)

In (69) we note that l ≥ k, so define l−k
n−k+1 = γ as in (70). Then n−k+1

n−l+1 = 1
1−γ

.
The third term of (66), i.e., the intersection of region three and the “box” in Fig. 10 where

l ≥ k, can be bounded as,

n−∆
∑

l=1

k∗(l)−1
∑

k=1

pn(l, k) ≤
n+1
∑

l=1

min{l,k∗(n−∆)−1}
∑

k=1

pn(l, k) (72)

=

k∗(n−∆)−1
∑

k=1

n+1
∑

l=k

pn(l, k) (73)

≤

k∗(n−∆)−1
∑

k=1

n+1
∑

l=k

exp{−(n − k + 1)Ey(Rx, Ry,
l − k

n − k + 1
)}

≤

k∗(n−∆)−1
∑

k=1

n+1
∑

l=k

exp{−(n − k + 1) inf
γ∈[0,1]

Ey(Rx, Ry, γ)}

≤

k∗(n−∆)−1
∑

k=1

(n − k + 2) exp{−(n − k + 1) inf
γ∈[0,1]

Ey(Rx, Ry, γ)} (74)

In (72) we note that l ≤ n − ∆ thus k∗(n − ∆) − 1 ≥ k∗(l) − 1, also l ≥ 1, so l ≥ k∗(l) − 1.
This can be visualized in Fig 10 as we extend the summation from the intersection of the “box”
and region 3 to the whole region under the diagonal line and the horizontal line k = k∗(n−∆)− 1.
In (73) we simply switch the order of the summation.

30

Finally when G ≥ 2, we substitute (68), (71), and (74) into (66) to give

Pr[x̂n−∆ 6= x
n−∆] ≤ C2 exp{−∆[inf

γ∈[0,1]
Ex(Rx, Ry, γ) − α]}

+
n−∆
∑

l=1

(l − k∗(l)) exp{−(n − l + 1) inf
γ∈[0,1]

1

1 − γ
Ey(Rx, Ry, γ)} (75)

+

k∗(n−∆)−1
∑

k=1

(n − k + 2) exp{−(n − k + 1) inf
γ∈[0,1]

Ey(Rx, Ry, γ)}

≤ C2 exp{−∆[inf
γ∈[0,1]

Ex(Rx, Ry, γ) − α]}

+
n−∆
∑

l=1

(l − n − 1 + G(n + 1 − l)) exp{−(n − l + 1) inf
γ∈[0,1]

1

1 − γ
Ey(Rx, Ry, γ)}

+

n+1−G(∆+1)
∑

k=1

(n − k + 2) exp{−(n − k + 1) inf
γ∈[0,1]

Ey(Rx, Ry, γ)} (76)

≤ C2 exp{−∆[inf
γ∈[0,1]

Ex(Rx, Ry, γ) − α]}

+ (G − 1)C3 exp{−∆
[

inf
γ∈[0,1]

1

1 − γ
Ey(Rx, Ry, γ) − α

]

}

+ C4 exp{−
[

∆G inf
γ∈[0,1]

Ey(Rx, Ry, γ) − α
]

}

≤ C5 exp
{

− ∆
[

min
{

inf
γ∈[0,1]

Ex(Rx, Ry, γ), inf
γ∈[0,1]

1

1 − γ
Ey(Rx, Ry, γ)

}

− α
]}

.

(77)

To get (76), we use the fact that k∗(l) ≥ n + 1−G(n + 1− l) from the definition of k∗(l) in (67) to
upper bound the second term. We exploit the definition of G to convert the exponent in the third
term to infγ∈[0,1] Ex(Rx, Ry, γ). Finally, to get (77) we gather the constants together, sum out over
the decaying exponentials, and are limited by the smaller of the two exponents.

Note: in the proof of Theorem 6, we regularly double count the error events or add smaller
extra probabilities to make the summations simpler. But it should be clear that the error exponent
is not affected.

7.2 Universal Decoding

As discussed in Section 5.3, we do not use a pairwise minimum joint-entropy decoder because of
polynomial term in n would multiply the exponential decay in ∆. Analogous to the sequential
decoder used there, we use a “weighted suffix entropy” decoder. The decoding starts by first
identifying candidate sequence pairs as those that agree with the encoding bit streams up to time
n, i.e., x̄n ∈ Bx(xn), ȳn ∈ By(y

n). For any one of the |Bx(xn)||By(y
n)| sequence pairs in the

candidate set, i.e., (x̄n, ȳn) ∈ Bx(xn) × By(y
n) we compute (n + 1) × (n + 1) weighted entropies:

31

HS(l, k, x̄n, ȳn) = H(x̄
(n+1−l)
l , ȳ

(n+1−l)
l), l = k

HS(l, k, x̄n, ȳn) =
k − l

n + 1 − l
H(x̄k−1

l |ȳk−1
l) +

n + 1 − k

n + 1 − l
H(x̄n

k , ȳn
k), l < k

HS(l, k, x̄n, ȳn) =
l − k

n + 1 − k
H(ȳl−1

k |x̄l−1
k) +

n + 1 − l

n + 1 − k
H(x̄n

l , ȳn
l), l > k.

We define the score of (x̄n, ȳn) as the pair of integers ix(x̄n, ȳn), iy(x̄
n, ȳn) s.t.,

ix(x̄n, ȳn) = max{i : HS(l, k, (x̄n, ȳn)) < HS(l, k, x̃n, ỹn)∀k = 1, 2, ...n + 1,∀l = 1, 2, ...i,

∀(x̃n, ỹn) ∈ Bx(xn) × By(y
n) ∩ Fn(l, k, x̄n, ȳn)} (78)

iy(x̄
n, ȳn) = max{i : HS(l, k, (x̄n, ȳn)) < HS(l, k, x̃n, ỹn)∀l = 1, 2, ...n + 1,∀k = 1, 2, ...i,

∀(x̃n, ỹn) ∈ Bx(xn) × By(y
n) ∩ Fn(l, k, x̄n, ȳn)} (79)

While Fn(l, k, xn, yn) is the same set as defined in (51), we repeat the definition here for convenience,

Fn(l, k, xn, yn) = {(x̄n, ỹn) ∈ X n × Yn s.t. x̄l−1 = xl−1, x̄l 6= xl, ȳ
k−1 = yk−1, ȳk 6= yk}.

The definition of (ix(x̄n, ȳn), iy(x̄
n, ȳn)) can be visualized in the following procedure. As shown

in Fig. 11, for all 1 ≤ l, k ≤ n + 1, if there exists (¯̄xn, ¯̄yn) ∈ Fn(l, k, (x̄n, ȳn)) ∩ Bx(xn) ×By(y
n) s.t.

HS(l, k, x̄n, ȳn) ≥ HS(l, k, ¯̄xn, ¯̄yn) , then we mark (l, k) on the plane as shown in Fig.11. Eventually
we pick the maximum integer which is smaller than all marked x-coordinates as ix(x̄n, ȳn) and
the maximum integer which is smaller than all marked y-coordinates as iy(x̄

n, ȳn). The score of
(x̄n, ȳn) tells us the first branch(either x or y) point where a “better sequence pair” (with a smaller
weighted entropy) exists.

Define the set of the winners as the sequences (not sequence pair) with the maximum score:

Wx
n = {x̄n ∈ Bx(xn) : ∃ȳn ∈ By(y

n), s.t.ix(x̄n, ȳn) ≥ ix(x̃n, ỹn),∀(x̃n, ỹn) ∈ Bx(xn) × By(y
n)}

Wy
n = {ȳn ∈ By(y

n) : ∃x̄n ∈ Bx(xn), s.t.iy(x̄
n, ȳn) ≥ iy(x̃

n, ỹn),∀(x̃n, ỹn) ∈ Bx(xn) × By(y
n)}

Then arbitrarily pick one sequence from Wx
n and one from Wy

n as the decision (x̂n, ŷn).
We bound the probability that there exists a sequence pair in Fn(l, k, (xn, yn))∩Bx(xn)×By(y

n)
with smaller weighted minimum-entropy suffix score as:

pn(l, k) =
∑

xn

∑

yn

pxy (xn, yn)P (∃(x̃n
1 , ỹn

1) ∈ Bx(xn) × By(y
n) ∩ Fn(l, k, xn, yn),

s.t.HS(l, k, x̃n, ỹn) ≤ HS(l, k, (xn, yn)))

Note that the pn(l, k) here differs from the pn(l, k) defined in the ML decoding by replacing
pxy (xn, yn) ≤ pxy (x̃n, ỹn) with HS(l, k, x̃n, ỹn) ≤ HS(l, k, (xn, yn)).

The following lemma, analogous to (50) for ML decoding, tells us that the “suffix weighted
entropy” decoding rule is a good one.

32

-

6

k

l

n
+

1

n + 11

1
i y

ix

Figure 11: 2D interpretation of the score, (ix(x̄n, ȳn), iy(x̄
n, ȳn)), of a sequence pair (x̄n, ȳn). If

there exists a sequence pair in Fn(l, k, x̄n, ȳn) with less or the same score, then (l, k) is marked with
a solid dot. The score ix(x̄n, ȳn) is the largest integer which is smaller than all the x-coordinates
of the marked points. Similarly for iy(x̄

n, ȳn),

33

Lemma 5 Upper bound on symbol-wise decoding error Pex(k, k + d) :

Pr[x̂n−∆ 6= x
n−∆] ≤

n−∆
∑

l=1

n+1
∑

k=1

pn(l, k)

Proof: According to the decoding rule, x̂n−∆ 6= xn−∆ implies that there exists a sequence
x̃n ∈ Wx

n s.t.x̃n−∆ 6= xn−∆. This means that there exists a sequence ỹn ∈ By(y
n), s.t. ix(x̃n, ỹn) ≥

ix(xn, yn). Suppose that (x̃n, ỹn) ∈ Fn(l, k, xn, yn), then l ≤ n − ∆ because x̃n−∆ 6= xn−∆. By
the definition of ix, we know that HS(l, k, x̃n, ỹn) ≤ HS(l, k, xn, yn). And using the union bound
argument we get the desired inequality. �

We only need to bound each single error probability pn(l, k) to finish the proof.

Lemma 6 Upper bound on pn(l, k), l ≤ k: ∀γ > 0, ∃K1 < ∞, s.t.

pn(l, k) ≤ exp{−(n − l + 1)[Ex(Rx, Ry, λ) − γ]}

where λ = (k − l)/(n − l + 1) ∈ [0, 1].

Proof: Here the error probability pn(l, k) can be thought as starting from (54) with the condition
(k− l)H(x̃k−1

l |ỹk−1
l)+(n−k+1)H(x̃n

k , ỹn
k) < (k− l)H(xk−1

l |yk−1
l)+(n−k+1)H(xn

k , yn
k) substituted

for p(x̃n
l , ỹn

l) > p(xn
l , yn

l), we get

pn(l, k) =
∑

P n−k,P k−l

∑

V n−k,V k−l

∑

y
k−1
l

∈ T
P k−l ,

yn
k ∈ T

P n−k

∑

x
k−1
l

∈ T
V k−l (y

k−1
l

),

xn
k ∈ T

V n−k(yn
k

)

min
[

1,
∑

Ṽ n−k, Ṽ k−l, P̃ n−k s.t.

S(P̃ n−k, P k−l, Ṽ n−k, Ṽ k−l) <

S(P n−k, P k−l, V n−k, V k−l)

∑

ỹn
k
∈T

P̃n−k

∑

x̃k−1
l

∈T
Ṽ k−l (y

k−1
l

)

∑

x̃n
k
∈T

Ṽ n−k (ỹn
k
)

exp{−(n − l + 1)Rx − (n − k + 1)Ry}
]

pxy (xn, yn)

(80)

In (80) we enumerate all the source sequences in a way that allows us to focus on the types of
the important subsequences. We enumerate the possibly misleading candidate sequences in terms
of their suffixes types. We restrict the sum to those pairs (x̃n, ỹn) that could lead to mistaken
decoding, defining the compact notation S(Pn−k, P k−l, V n−k, V k−l) , (k − l)H(V k−l|P k−l) + (n−
k + 1)H(Pn−k × V n−k), which is the weighted suffix entropy condition rewritten in terms of types.

Note that the summations within the minimization in (80) do not depend on the arguments
within these sums. Thus, we can bound this sum separately to get a bound on the number of

34

possibly misleading source pairs (x̃, ỹ).

∑

Ṽ n−k, Ṽ k−l, P̃ n−k s.t.

S(P̃ n−k, P k−l, Ṽ n−k, Ṽ k−l) <

S(P n−k, P k−l, V n−k, V k−l)

∑

ỹn
k
∈T

P̃n−k

∑

x̃k−1
l

∈T
Ṽ k−l (y

k−1
l

)

∑

x̃n
k
∈T

Ṽ n−k (ỹn
k
)

≤
∑

Ṽ n−k, Ṽ k−l, P̃ n−k s.t.

S(P̃ n−k, P k−l, Ṽ n−k, Ṽ k−l) <

S(P n−k, P k−l, V n−k, V k−l)

∑

ỹn
k
∈T

P̃n−k

|T
Ṽ k−l(yk−1

l
)||TṼ n−k(ỹn

k
)| (81)

≤
∑

Ṽ n−k, Ṽ k−l, P̃ n−k s.t.

S(P̃ n−k, P k−l, Ṽ n−k, Ṽ k−l) <

S(P n−k, P k−l, V n−k, V k−l)

|TP̃ n−k | exp{(k − l)H(Ṽ k−l|P k−l)} exp{(n − k + 1)H(Ṽ n−k|P̃n−k)}

(82)

≤
∑

Ṽ n−k, Ṽ k−l, P̃ n−k s.t.

S(P̃ n−k, P k−l, Ṽ n−k, Ṽ k−l) <

S(P n−k, P k−l, V n−k, V k−l)

exp{(k − l)H(Ṽ k−l|P k−l) + (n − k + 1)H(P̃n−k × Ṽ n−k)} (83)

≤
∑

Ṽ n−k,Ṽ k−l,P̃ n−k

exp{(k − l)H(V k−l|P k−l) + (n − k + 1)H(Pn−k × V n−k)} (84)

≤ (n − l + 2)2|X ||Y| exp{(k − l)H(V k−l|P k−l) + (n − k + 1)H(Pn−k × V n−k)} (85)

In (81) we sum over all x̃k−1
l ∈ TṼ k−l(y

k−1
l). In (82) we use standard bounds, e.g., |TṼ k−l(y

k−1
l)| ≤

exp{(k − l)H(Ṽ k−l|P k−l)} since yk−1
l ∈ TP k−l . We also sum over all x̃n

k ∈ TṼ n−k(ỹn
k) and over all

ỹn
k ∈ TP̃ n−k in (82). By definition of the decoding rule (x̃, ỹ) can only lead to a decoding error if

(k− l)H(Ṽ k−l|P k−l)]+ (n− k +1)H(P̃n−k × Ṽ n−k) < (k− l)H(V k−l|P k−l)+ (n− k +1)H(Pn−k ×
V n−k). In (85) we apply the polynomial bound on the number of types.

We substitute (85) into (80) and pull out the polynomial term, giving

pn(l, k) ≤ (n − l + 2)2|X ||Y|
∑

P n−k,P k−l

∑

V n−k,V k−l

∑

y
k−1
l

∈ T
P k−l ,

yn
k ∈ T

P n−k

∑

x
k−1
l

∈ T
V k−l (y

k−1
l

),

xn
k ∈ T

V n−k(yn
k

)

min
[

1, exp{−(k − l)[Rx − H(V k−l|P k−l)] − (n − k + 1)[Rx + Ry − H(V n−k × Pn−k)]}
]

px
n
l

,yn
l
(xn

l , yn
l)

≤(n − l + 2)2|X ||Y|
∑

P n−k,P k−l

∑

V n−k,V k−l

exp
{

max
[

0,−(k − l)[Rx − H(V k−l|P k−l)] − (n − k + 1)[Rx + Ry − H(V n−k × Pn−k)]
]}

exp
{

−(k − l)D(V k−l × P k−l‖pxy) − (n − k + 1)D(V n−k × Pn−k‖pxy)
}

(86)

≤(n − l + 2)2|X ||Y|
∑

P n−k,P k−l

∑

V n−k,V k−l

exp
{

− (n − l + 1)
[

λD(V k−l × P k−l‖pxy) + λ̄D(V n−k × Pn−k‖pxy)

+
∣

∣

∣
λ[Rx − H(V k−l|P k−l)] + λ̄[Rx + Ry − H(V n−k × Pn−k)]

∣

∣

∣

+]}

(87)

35

≤(n − l + 2)2|X ||Y|
∑

P n−k,P k−l

∑

V n−k,V k−l

exp
{

− (n − l + 1) inf
x̃ ,ỹ ,x̄ ,ȳ

[

λD(px̃ ,ỹ‖pxy) + λ̄D(px̄ ,ȳ‖pxy)

+
∣

∣λ[Rx − H(x̃ |ỹ)] + λ̄[Rx + Ry − H(x̄ , ȳ)]
∣

∣

+
]}

(88)

≤(n − l + 2)4|X ||Y| exp{−(n − l + 1)Ex(Rx, Ry, λ)} ≤ K1 exp{−(n − l + 1)[Ex(Rx, Ry, λ) − γ]}
(89)

(90)

In (86) we use the memoryless property of the source, and exponential bounds on the proba-
bility of observing (xk−1

l , yk−1
l) and (xn

k , yn
k). In (87) we pull out (n − l + 1) from all terms,

noticing that λ = (k − l)/(n − l + 1) ∈ [0, 1] and λ̄ , 1 − λ = (n − k + 1)/(n − l + 1).
In (88) we minimize the exponent over all choices of distributions px̃ ,ỹ and px̄ ,ȳ . In (89) we define
the universal random coding exponent Ex(Rx, Ry, λ) , inf x̃ ,ỹ ,x̄ ,ȳ{λD(px̃ ,ỹ‖pxy) + λ̄D(px̄ ,ȳ‖pxy) +
∣

∣λ[Rx − H(x̃ |ỹ)] + λ̄[Rx + Ry − H(x̄ , ȳ)]
∣

∣

+
} where 0 ≤ λ ≤ 1 and λ̄ = 1 − λ. We also incorporate

the number of conditional and marginal types into the polynomial bound, as well as the sum over
k, and then push the polynomial into the exponent since for any polynomial F , ∀E, ǫ > 0, there
exists C > 0, s.t. F (∆)e−∆E ≤ Ce−∆(E−ǫ) . �

A similar derivation yields a bound on pn(l, k) for l ≥ k.
Combining Lemmas 6 and 5, and then following the same derivation for ML decoding yields

Theorem 7.

8 Future Directions

8.1 Stationary-ergodic sources and universality

[4] extends the block-coding proofs to the Slepian-Wolf problem for stationary-ergodic sources using
AEP arguments. To have a similar extension to the streaming context, possibly additional regularity
conditions will be required so that error exponents can be achieved. To achieve universality over
sources, it is possible that further technical restrictions will be required. For the case of distributed
Markov sources however, it seems quite clear that all the arguments in this paper will easily
generalize. In that case, following the approach we take in [15], the source can be “segmented” into
small blocks and the endpoints14 of the blocks can be encoded perfectly at essentially zero rate.
Conditioned on these endpoints, the blocks are then iid, with the endpoints representing a third
stream of perfectly known side-information.

8.2 Upper bounds and demonstrating optimal delays

This paper dealt entirely with achievability of certain error exponents. Ideally, we would have
corresponding upper bounds demonstrating that no higher exponents are possible. In the block-
coding case, problem 3.7.1 in [5] provides a simple upper-bound. However, the nature of the error
exponents in the streaming case might be more complicated. [2] provides an upper bound and
matching achievable scheme for point-to-point source-coding with delay and this bound extends
naturally to the case where side-information is known at both the encoder and the decoder. [3]
provides an upper bound for the case of side-information known only at the decoder, and this bound

14For a Markov source of known order k, the endpoint is just k successive symbols at the end of the block.

36

is tight for certain symmetric cases. However, both of these extended single encoder arguments
from [14] that do not immediately generalize to the case of multiple encoders.

8.3 Trading off error exponents for the different source terminals

For multiple terminal systems, different error exponents can be achieved for different users or
sources. For channel coding, the encoders can choose different distributions while generating the
randomized code book to achieve an error exponent trade-off among different users. In [17], the
error exponent region is studied for the Gaussian multiple access channel and the broadcast channel
within the block-coding paradigm. It is unclear whether similar tradeoffs are possible within the
streaming Slepian Wolf problems considered here since there is nothing immediately comparable
to the flexibility we have in choosing the “input distribution” for channel coding problems.

8.4 Adaptation and limited feedback

An interesting extension is to adaptive universal streaming Slepian Wolf encoders. The decoders
we use in this paper are based on empirical statistics. Therefore they can be used even if source
statistics are unknown. The current proposal will work regardless of source and side information
statistics as long as the conditional entropy H(x |y) is less than the encoding rate. Even if there is
uncertainty in statistics, the anytime nature of the coding system should enable the system to adapt
on-line to the unknown entropy rate if some feedback channel is available. The feedback channel
would be used to order increases (or decreases) in the binning rate. An increase (or decrease)
could be triggered by examining the difference between two quantities: the minimal empirical joint
entropy between the decoded sequence and observation, and the empirical joint entropy between
the particular sequence and observation yielding the second-lowest joint entropy. If there is a large
difference between these two entropies, we are using rate excessively, and the rate of communication
can be reduced. If the difference is negligible, then it’s likely we are not decoding correctly. Our
target should be to keep this difference at roughly ǫ. In the current context, this is analogous to
the rate margin by which we choose to exceed the known conditional entropy.

Acknowledgments

The authors wish to acknowledge a desire expressed by Zixiang Xiong and subsequent hallway
discussions during ITW 2004 that helped precipitate the current line of research. This work was
supported in part by NSF ITR Grant No. CNS-0326503.

A Proof of Theorem 8

In this section we show that the maximum likelihood (ML) error exponent equals the universal
error exponent. We show that for all γ,

EML
x (Rx, Ry, γ) = EUN

x (Rx, Ry, γ)

37

Where the ML error exponent:

EML
x (Rx, Ry, γ) = sup

ρ∈[0,1]
{γEx|y(Rx, ρ) + (1 − γ)Exy(Rx, Ry, ρ)}

= sup
ρ∈[0,1]

{ρR(γ) − γ log(
∑

y

(
∑

x

pxy (x, y)
1

1+ρ)1+ρ) − (1 − γ)(1 + ρ) log(
∑

y

∑

x

pxy (x, y)
1

1+ρ)}

= sup
ρ∈[0,1]

{EML
x (Rx, Ry, γ, ρ)}

Write the function inside the sup argument as EML
x (Rx, Ry, γ, ρ). The universal error exponent:

EUN
x (Rx, Ry, γ) = inf

qxy ,oxy

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy)

+ max{0, γ(Rx − H(qx|y)) + (1 − γ)(Rx + Ry − H(oxy))}}

= inf
qxy ,oxy

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy) + max{0, R(γ) − γH(qx|y) − (1 − γ)H(oxy)}}

Here we define R(γ) = γRx+(1−γ)(Rx+Ry) > γH(px |y)+(1−γ)H(pxy). For notational simplicity,
we write qxy and oxy as two arbitrary joint distributions on X ×Y instead of px̄ ȳ and p¯̄x ¯̄y . We still
write pxy as the distribution of the source.

Before the proof, we define a pair of distributions that we will need.

Definition 4 Tilted distribution of pxy : pρ
xy , for all ρ ∈ [−1,∞)

pρ
xy

(x, y) =
pxy (x, y)

1
1+ρ

∑

t

∑

s pxy (s, t)
1

1+ρ

The entropy of the tilted distribution is written as H(pρ
xy). Obviously p0

xy
= pxy .

Definition 5 x − y tilted distribution of pxy : p̄ρ
xy , for all ρ ∈ [−1, +∞)

p̄ρ
xy

(x, y) =
[
∑

s pxy (s, y)
1

1+ρ]1+ρ

∑

t[
∑

s pxy (s, t)
1

1+ρ]1+ρ
×

pxy (x, y)
1

1+ρ

∑

s pxy (s, y)
1

1+ρ

=
A(y, ρ)

B(ρ)
×

C(x, y, ρ)

D(y, ρ)

Where

A(y, ρ) = [
∑

s

pxy (s, y)
1

1+ρ]1+ρ = D(y, ρ)1+ρ

B(ρ) =
∑

s

[
∑

t

pxy (s, t)
1

1+ρ]1+ρ =
∑

y

A(y, ρ)

C(x, y, ρ) = pxy (x, y)
1

1+ρ

D(y, ρ) =
∑

s

pxy (s, y)
1

1+ρ =
∑

x

C(x, y, ρ)

38

The marginal distribution for y is A(y,ρ)
B(ρ) . Obviously p̄0

xy
= pxy . Write the conditional distribution

of x given y under distribution p̄ρ
xy as p̄ρ

x |y , where p̄ρ

x |y (x, y) = C(x,y,ρ)
D(y,ρ) , and the conditional entropy

of x given y under distribution p̄ρ
xy as H(p̄ρ

x |y). Obviously H(p̄0
x |y) = H(px |y).

The conditional entropy of x given y for the x − y tilted distribution is

H(p̄ρ

x |y=y
) = −

∑

x

C(x, y, ρ)

D(y, ρ)
log(

C(x, y, ρ)

D(y, ρ)
)

We introduce A(y, ρ), B(ρ), C(x, y, ρ), D(y, ρ) to simplify the notations. Some of their proper-
ties are shown in Lemma 10.

While tilted distributions are common optimal distributions in large deviation theory, it is
useful to contemplate why we need to introduce these two tilted distributions. In the proof of
Theorem 8, through a Lagrange multiplier argument, we will show that {pρ

xy : ρ ∈ [−1, +∞)} is the
family of distributions that minimize the Kullback−Leibler distance to pxy with fixed entropy and
{p̄ρ

xy : ρ ∈ [−1, +∞)} is the family of distributions that minimize the Kullback−Leibler distance
to pxy with fixed conditional entropy. Using a Lagrange multiplier argument, we parametrize the
universal error exponent EUN

x (Rx, Ry, γ) in terms of ρ and show the equivalence of the universal
and maximum likelihood error exponents.

Now we are ready to prove Theorem 8: EML
x (Rx, Ry, γ) = EUN

x (Rx, Ry, γ).
Proof:

A.1 case 1: γH(px |y) + (1 − γ)H(pxy) < R(γ) < γH(p̄1
x |y) + (1 − γ)H(p1

xy
).

First, from Lemma 16 and Lemma 17:

∂EML
x (Rx, Ry, γ, ρ)

∂ρ
= R(γ) − γH(p̄ρ

x |y) − (1 − γ)H(pρ
xy

)

Then, using Lemma 7 and Lemma 11, we have:

∂2EML
x (Rx, Ry, γ, ρ)

∂ρ
≤ 0

.
So ρ maximize EML

x (Rx, Ry, γ, ρ), if and only if:

0 =
∂EML

x (Rx, Ry, γ, ρ)

∂ρ
= R(γ) − γH(p̄ρ

x |y) − (1 − γ)H(pρ
xy

) (91)

Because R(γ) is in the interval [γH(px |y) + (1 − γ)H(pxy), γH(p̄1
x |y) + (1 − γ)H(p1

xy
)] and the

entropy functions monotonically-increase over ρ, we can find ρ∗ ∈ (0, 1), s.t.

γH(p̄ρ∗

x |y) + (1 − γ)H(pρ∗

xy
) = R(γ)

Using Lemma 14 and Lemma 15 we get:

EML
x (Rx, Ry, γ) = γD(p̄ρ∗

xy
‖pxy) + (1 − γ)D(pρ∗

xy
‖pxy) (92)

39

Where γH(p̄ρ∗

x |y) + (1− γ)H(pρ∗

xy) = R(γ) , ρ∗ is generally unique because both H(p̄ρ

x |y) and H(pρ
xy)

are strictly increasing with ρ.

Secondly

EUN
x (Rx, Ry, γ)

= inf
qxy ,oxy

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy) + max{0, R(γ) − γH(qx|y) − (1 − γ)H(oxy)}}

= inf
b
{ inf

qxy ,oxy :γH(qx|y)+(1−γ)H(oxy)=b
{γD(qxy||pxy) + (1 − γ)D(oxy||pxy) + max(0, R(γ) − b)}}

= inf
b≥γH(px|y)+(1−γ)H(pxy)

{ inf
qxy ,oxy :γH(qx|y)+(1−γ)H(oxy)=b

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy)

+ max(0, R(γ) − b)}} (93)

The last equality is true because, for b < γH(px |y) + (1 − γ)H(pxy) < R(γ),

inf
qxy ,oxy :γH(qx|y)+(1−γ)H(oxy)=b

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy) + max(0, R(γ) − b)}}

≥ 0 + R(γ) − b

= inf
qxy ,oxy :H(qx|y)=H(px|y),H(oxy)=H(pxy)

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy) + max(0, R(γ) − b)}}

≥ inf
qxy ,oxy :H(qx|y)=H(px|y),H(oxy)=H(pxy)

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy)

+ max(0, R(γ) − γH(px |y) + (1 − γ)H(pxy))}}

≥ inf
qxy ,oxy :γH(qx|y)+(1−γ)H(oxy)=γH(px|y)+(1−γ)H(pxy)

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy)

+ max(0, R(γ) − γH(px |y) + (1 − γ)H(pxy))}}

Fixing b ≥ γH(px |y)+(1−γ)H(pxy), the inner infimum in (93) is an optimization problem on qxy, oxy

with equality constraints
∑

x

∑

y qxy(x, y) = 1,
∑

x

∑

y oxy(x, y) = 1 and γH(qx|y)+(1−γ)H(oxy) =
b and the obvious inequality constraints 0 ≤ qxy(x, y) ≤ 1, 0 ≤ oxy(x, y) ≤ 1,∀x, y. In the following
formulation of the optimization problem, we relax one equality constraint to an inequality constraint
γH(qx|y) + (1 − γ)H(oxy) ≥ b to make the optimization problem convex. It turns out later that
the optimal solution to the relaxed problem is also the optimal solution to the original problem
because b ≥ γH(px |y) + (1 − γ)H(pxy). The resulting optimization problem is:

inf
qxy ,oxy

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy)}

s.t.
∑

x

∑

y

qxy(x, y) = 1

∑

x

∑

y

oxy(x, y) = 1

b − γH(qx|y) − (1 − γ)H(oxy) ≤ 0

0 ≤ qxy(x, y) ≤ 1, ∀(x, y) ∈ X × Y

0 ≤ oxy(x, y) ≤ 1, ∀(x, y) ∈ X × Y (94)

40

The above optimization problem is convex because the objective function and the inequality con-
straint functions are convex and the equality constraint functions are affine[1]. The Lagrange
multiplier function for this convex optimization problem is:

L(qxy, oxy, ρ, µ1, µ2, ν1, ν2, ν3, ν4)

= γD(qxy||pxy) + (1 − γ)D(oxy||pxy)

+µ1(
∑

x

∑

y

qxy(x, y) − 1) + µ2(
∑

x

∑

y

oxy(x, y) − 1)

+ρ(b − γH(qx|y) − (1 − γ)H(oxy))

+
∑

x

∑

y

{

ν1(x, y)(−qxy(x, y)) + ν2(x, y)(1 − qxy(x, y)) + ν3(x, y)(−oxy(x, y)) + ν4(x, y)(1 − oxy(x, y))
}

(95)

Where ρ, µ1, µ2 are real numbers and νi ∈ R|X ||Y|, i = 1, 2, 3, 4.
According to the KKT conditions for convex optimization[1], qxy, oxy minimize the convex

optimization problem in (94) if and only if the following conditions are simultaneously satisfied for
some qxy, oxy, µ1, µ2, ν1, ν2, ν3, ν4 and ρ:

0 =
∂L(qxy, oxy, ρ, µ1, µ2, ν1, ν2, ν3, ν4)

∂qxy(x, y)

= γ[− log(pxy (x, y)) + (1 + ρ)(1 + log(qxy(x, y))) + ρ log(
∑

s

qxy(s, y))] + µ1 − ν1(x, y) − ν2(x, y)

0 =
∂L(qxy, oxy, ρ, µ1, µ2, ν1, ν2, ν3, ν4)

∂oxy(x, y)

= (1 − γ)[− log(pxy (x, y)) + (1 + ρ)(1 + log(oxy(x, y)))] + µ2 − ν3(x, y) − ν4(x, y) (96)

For all x, y and

∑

x

∑

y

qxy(x, y) = 1

∑

x

∑

y

oxy(x, y) = 1

ρ(γH(qx|y) + (1 − γ)H(oxy) − b) = 0

ρ ≥ 0

ν1(x, y)(−qxy(x, y)) = 0, ν2(x, y)(1 − qxy(x, y)) = 0 ∀x, y

ν3(x, y)(−oxy(x, y)) = 0, ν4(x, y)(1 − oxy(x, y)) = 0 ∀x, y

νi(x, y) ≥ 0, ∀x, y, i = 1, 2, 3, 4 (97)

Solving the above standard Lagrange multiplier equations (96) and (97), we have:

41

qxy(x, y) =
[
∑

s pxy (s, y)
1

1+ρb]1+ρb

∑

t[
∑

s pxy (s, t)
1

1+ρb]1+ρb

pxy (x, y)
1

1+ρb

∑

s pxy (s, y)
1

1+ρb

= p̄ρb
xy

(x, y)

oxy(x, y) =
pxy (x, y)

1
1+ρb

∑

t

∑

s pxy (s, t)
1

1+ρb

= pρb
xy

(x, y)

νi(x, y) = 0 ∀x, y, i = 1, 2, 3, 4

ρ = ρb (98)

Where ρb satisfies the following condition

γH(p̄ρb

x |y) + (1 − γ)H(pρb
xy

) = b ≥ γH(px |y) + (1 − γ)H(pxy)

and thus ρb ≥ 0 because both H(p̄ρ

x |y) and H(pρ
xy) are monotonically increasing with ρ as shown in

Lemma 7 and Lemma 11.
Notice that all the KKT conditions are simultaneously satisfied with the inequality constraint

γH(qx|y)+ (1−γ)H(oxy) ≥ b being met with equality. Thus, the relaxed optimization problem has
the same optimal solution as the original problem as promised. The optimal qxy and oxy are the
x − y tilted distribution p̄ρb

xy and standard tilted distribution pρb
xy of pxy with the same parameter

ρb ≥ 0. chosen s.t.
γH(p̄ρb

x |y) + (1 − γ)H(pρb
xy

) = b

Now we have :

EUN
x (Rx, Ry, γ)

= inf
b≥γH(px|y)+(1−γ)H(pxy)

{ inf
qxy ,oxy :γH(qx|y)+(1−γ)H(oxy)=b

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy) + max(0, R(γ) − b)}}

= inf
b≥γH(px|y)+(1−γ)H(pxy)

{γD(p̄ρb
xy
||pxy) + (1 − γ)D(pρb

xy
||pxy) + max(0, R(γ) − b)}

= min[inf
ρ≥0:R(γ)≥γH(p̄ρ

x|y
)+(1−γ)H(pρ

xy)
{γD(p̄ρ

xy
||pxy) + (1 − γ)D(pxyρ ||pxy) + R(γ) − γH(p̄ρ

x |y) − (1 − γ)H(pρ
xy

)},

inf
ρ≥0:R(γ)≤γH(p̄ρ

x|y
)+(1−γ)H(pρ

xy)
{γD(p̄ρ

xy
||pxy) + (1 − γ)D(pxyρ ||pxy)}] (99)

Notice that H(pρ
xy), H(p̄ρ

x |y), D(p̄ρ
xy ||pxy) and D(pρ

xy ||pxy) are all strictly increasing with ρ > 0 as
shown in Lemma 11, Lemma 12, Lemma 7 and Lemma 8 later in this appendix. We have:

inf
ρ≥0:R(γ)≤γH(p̄ρ

x|y
)+(1−γ)H(pρ

xy)
{γD(p̄ρ

xy
||pxy) + (1 − γ)D(pρ

xy
||pxy)}

= γD(p̄ρ∗

xy
||pxy) + (1 − γ)D(pρ∗

xy
||pxy) (100)

42

where R(γ) = γH(p̄ρ∗

x |y) + (1− γ)H(pρ∗

xy). Applying the results in Lemma 13 and Lemma 9, we get:

inf
ρ≥0:R(γ)≥γH(p̄ρ

x|y
)+(1−γ)H(pρ

xy)
{γD(p̄ρ

xy
||pxy) + (1 − γ)D(pρ

xy
||pxy) + R(γ) − γH(p̄ρ

x |y) − (1 − γ)H(pρ
xy

)}

= γD(p̄ρ
xy
||pxy) + (1 − γ)D(pρ

xy
||pxy) + R(γ) − γH(p̄ρ

x |y) − (1 − γ)H(pρ
xy

)|ρ=ρ∗

= γD(p̄ρ∗

xy
||pxy) + (1 − γ)D(pρ∗

xy
||pxy) (101)

This is true because for ρ : R(γ) ≥ γH(p̄ρ

x |y) + (1 − γ)H(pρ
xy), we know ρ ≤ 1 because of the range

of R(γ): R(γ) < γH(p̄1
x |y) + (1 − γ)H(p1

xy
). Substituting (100) and (101) into (99), we get

EUN
x (Rx, Ry, γ) = γD(p̄ρ∗

xy
||pxy) + (1 − γ)D(pρ∗

xy
||pxy)

where R(γ) = γH(p̄ρ∗

x |y) + (1 − γ)H(pρ∗

xy
) (102)

So for γH(px |y) + (1− γ)H(pxy) ≤ R(γ) ≤ γH(p̄1
x |y) + (1− γ)H(p1

xy
), from (92) we have the desired

property:
EML

x (Rx, Ry, γ) = EUN
x (Rx, Ry, γ)

A.2 case 2: R(γ) ≥ γH(p̄1
x |y) + (1 − γ)H(p1

xy
).

In this case, for all 0 ≤ ρ ≤ 1

∂EML
x (Rx, Ry, γ, ρ)

∂ρ
= R(γ) − γH(p̄ρ

x |y) − (1 − γ)H(pρ
xy

) ≥ R(γ) − γH(p̄1
x |y) − (1 − γ)H(p1

xy
) ≥ 0

So ρ takes value 1 to maximize the error exponent EML
x (Rx, Ry, γ, ρ), thus

EML
x (Rx, Ry, γ) = R(γ) − γ log(

∑

y

(
∑

x

pxy (x, y)
1
2)2) − 2(1 − γ) log(

∑

y

∑

x

pxy (x, y)
1
2) (103)

Using the same convex optimization techniques as case A.1, we notice the fact that ρ∗ ≥ 1 for
R(γ) = γH(p̄ρ∗

x |y) + (1 − γ)H(pρ∗

xy). Then applying Lemma 13 and Lemma 9, we have:

inf
ρ≥0:R(γ)≥γH(p̄ρ

x|y
)+(1−γ)H(pρ

xy)
{γD(p̄ρ

xy
||pxy) + (1 − γ)D(pρ

xy
||pxy) + R(γ) − γH(p̄ρ

x |y) − (1 − γ)H(pxyρ)},

= γD(p̄1
xy
||pxy) + (1 − γ)D(p1

xy
||pxy) + R(γ) − γH(p̄1

x |y) − (1 − γ)H(p1
xy

)

And

inf
ρ≥0:R(γ)≤γH(p̄ρ

x|y
)+(1−γ)H(pρ

xy)
{γD(p̄ρ

xy
||pxy) + (1 − γ)D(pρ

xy
||pxy)}]

= γD(p̄ρ∗

xy
||pxy) + (1 − γ)D(pρ∗

xy
||pxy)

= γD(p̄ρ∗

xy
||pxy) + (1 − γ)D(pρ∗

xy
||pxy) + R(γ) − γH(p̄ρ∗

x |y) − (1 − γ)H(pρ∗

xy
)

≤ γD(p̄1
xy
||pxy) + (1 − γ)D(p1

xy
||pxy) + R(γ) − γH(p̄1

x |y) − (1 − γ)H(p1
xy

)

43

Finally:

EUN
x (Rx, Ry, γ)

= inf
b≥γH(px|y)+(1−γ)H(pxy)

{ inf
qxy ,oxy :γH(qx|y)+(1−γ)H(oxy)=b

{γD(qxy||pxy) + (1 − γ)D(oxy||pxy) + max(0, R(γ) − b)}}

= inf
b≥γH(px|y)+(1−γ)H(pxy)

{γD(p̄ρb
xy
||pxy) + (1 − γ)D(pρb

xy
||pxy) + max(0, R(γ) − b)}

= min[inf
ρ≥0:R(γ)≥γH(p̄ρ

x|y
)+(1−γ)H(pρ

xy)
{γD(p̄ρ

xy
||pxy) + (1 − γ)D(pρ

xy
||pxy) + R(γ) − γH(p̄ρ

x |y) − (1 − γ)H(pρ
xy

)},

inf
ρ≥0:R(γ)≤γH(p̄ρ

x|y
)+(1−γ)H(pρ

xy)
{γD(p̄ρ

xy
||pxy) + (1 − γ)D(pρ

xy
||pxy)}]

= γD(p̄1
xy
||pxy) + (1 − γ)D(p1

xy
||pxy) + R(γ) − γH(p̄1

x |y) − (1 − γ)H(p1
xy

)

= R(γ) − γ log(
∑

y

(
∑

x

pxy (x, y)
1
2)2) − 2(1 − γ) log(

∑

y

∑

x

pxy (x, y)
1
2) (104)

The last equality is true by setting ρ = 1 in Lemma 14 and Lemma 15.
Again, EML

x (Rx, Ry, γ) = EUN
x (Rx, Ry, γ), thus we finish the proof. �

A.3 Technical Lemmas

Some technical lemmas we used in the above proof of Theorem 8 are now discussed:

Lemma 7
∂H(pρ

xy)
∂ρ

≥ 0

Proof: From the definition of the tilted distribution we have the following observation:

log(pρ
xy (x1, y1)) − log(pρ

xy (x2, y2)) = log(pxy (x1, y1)
1

1+ρ) − log(pxy (x2, y2)
1

1+ρ)
Using the above equality, we first derive the derivative of the tilted distribution, for all x, y

∂pρ
xy (x, y)

∂ρ
=

−1

(1 + ρ)2
pxy (x, y)

1
1+ρ log(pxy (x, y))(

∑

t

∑

s pxy (s, t)
1

1+ρ)

(
∑

t

∑

s pxy (s, t)
1

1+ρ)2

−
−1

(1 + ρ)2
pxy (x, y)

1
1+ρ (

∑

t

∑

s pxy (s, t)
1

1+ρ log(pxy (s, t)))

(
∑

t

∑

s pxy (s, t)
1

1+ρ)2

=
−1

1 + ρ
pρ
xy

(x, y)[log(pxy (x, y)
1

1+ρ) −
∑

t

∑

s

pρ
xy

(s, t) log(pxy (s, t)
1

1+ρ)]

=
−1

1 + ρ
pρ
xy

(x, y)[log(pρ
xy

(x, y)) −
∑

t

∑

s

pρ
xy

(s, t) log(pρ
xy

(s, t))]

= −
pρ
xy (x, y)

1 + ρ
[log(pρ

xy
(x, y)) + H(pρ

xy
)] (105)

Then:

44

∂H(pρ
xy)

∂ρ
= −

∂
∑

x,y pρ
xy (x, y) log(pρ

xy (x, y))

∂ρ

= −
∑

x,y

(1 + log(pρ
xy

(x, y)))
∂pρ

xy (x, y)

∂ρ

=
∑

x,y

(1 + log(pρ
xy

(x, y)))
pρ
xy (x, y)

1 + ρ
(log(pρ

xy
(x, y)) + H(pρ

xy
))

=
1

1 + ρ

∑

x,y

pρ
xy

(x, y) log(pρ
xy

(x, y))(log(pρ
xy

(x, y)) + H(pρ
xy

))

=
1

1 + ρ
[
∑

x,y

pρ
xy

(x, y)(log(pρ
xy

(x, y)))2 − H(pρ
xy

)2]

=
1

1 + ρ
[
∑

x,y

pρ
xy

(x, y)(log(pρ
xy

(x, y)))2
∑

x,y

pρ
xy

(x, y) − H(pρ
xy

)2]

≥(a)
1

1 + ρ
[(
∑

x,y

pρ
xy

(x, y) log(pρ
xy

(x, y)))2 − H(pρ
xy

)2]

= 0 (106)

where (a) is true by the Cauchy-Schwartz inequality. �

Lemma 8
∂D(pρ

xy‖P)
∂ρ

= ρ
∂H(pρ

xy)
∂ρ

Proof: As shown in Lemma 14 and Lemma 16 respectively:

D(pρ
xy
‖pxy) = ρH(pρ

xy
) − (1 + ρ) log(

∑

x,y

pxy (x, y)
1

1+ρ)

H(pρ
xy

) =
∂(1 + ρ) log(

∑

y

∑

x pxy (x, y)
1

1+ρ)

∂ρ

We have:

∂D(pρ
xy‖pxy)

∂ρ
= H(pρ

xy
) + ρ

∂H(pρ
xy)

∂ρ
−

∂(1 + ρ) log(
∑

y

∑

x pxy (x, y)
1

1+ρ)

∂ρ

= H(pρ
xy

) + ρ
∂H(pρ

xy)

∂ρ
− H(pρ

xy
)

= ρ
∂H(pρ

xy)

∂ρ
(107)

�

Lemma 9 sign
∂[D(pρ

xy‖pxy)−H(pρ
xy)]

∂ρ
= sign(ρ − 1).

45

Proof: Combining the results of the previous two lemmas, we have:

∂D(pρ
xy‖pxy) − H(pρ

xy)

∂ρ
= (ρ − 1)

∂H(pρ
xy)

∂ρ
= sign(ρ − 1)

�

Lemma 10 Properties of ∂A(y,ρ)
∂ρ

, ∂B(ρ)
∂ρ

, ∂C(x,y,ρ)
∂ρ

, ∂D(y,ρ)
∂ρ

and
∂H(p̄ρ

x|y=y
)

∂ρ

First,

∂C(x, y, ρ)

∂ρ
=

∂pxy (x, y)
1

1+ρ

∂ρ
= −

1

1 + ρ
pxy (x, y)

1
1+ρ log(pxy (x, y)

1
1+ρ)

= −
C(x, y, ρ)

1 + ρ
log(C(x, y, ρ))

∂D(y, ρ)

∂ρ
=

∂
∑

s pxy (s, y)
1

1+ρ

∂ρ
= −

1

1 + ρ

∑

s

pxy (s, y)
1

1+ρ log(pxy (s, y)
1

1+ρ)

= −

∑

x C(x, y, ρ) log(C(x, y, ρ))

1 + ρ
(108)

For a differentiable function f(ρ),

∂f(ρ)1+ρ

∂ρ
= f(ρ)1+ρ log(f(ρ)) + (1 + ρ)f(ρ)ρ ∂f(ρ)

∂ρ

So

∂A(y, ρ)

∂ρ
=

∂D(y, ρ)1+ρ

∂ρ
= D(y, ρ)1+ρ log(D(y, ρ)) + (1 + ρ)D(y, ρ)ρ ∂D(y, ρ)

∂ρ

= D(y, ρ)1+ρ(log(D(y, ρ)) −
∑

x

C(x, y, ρ)

D(y, ρ)
log(C(x, y, ρ)))

= D(y, ρ)1+ρ(−
∑

x

C(x, y, ρ)

D(y, ρ)
log(

C(x, y, ρ)

D(y, ρ))
))

= A(y, ρ)H(p̄ρ

x |y=y
)

∂B(ρ)

∂ρ
=

∑

y

∂A(y, ρ)

∂ρ
=
∑

y

A(y, ρ)H(p̄ρ

x |y=y
) = B(ρ)

∑

y

A(y, ρ)

B(ρ)
H(p̄ρ

x |y=y
) = B(ρ)H(p̄ρ

x |y)

And last:

46

∂H(p̄ρ

x |y=y
)

∂ρ

= −
∑

x

[

∂C(x,y,ρ)
∂ρ

D(y, ρ)
−

C(x, y, ρ)∂D(y,ρ)
∂ρ

D(y, ρ)2
][1 + log(

C(x, y, ρ)

D(y, ρ)
)]

= −
∑

x

[
−C(x,y,ρ)

1+ρ
log(C(x, y, ρ))

D(y, ρ)
+

C(x, y, ρ)
P

s C(s,y,ρ) log(C(s,y,ρ))
1+ρ

D(y, ρ)2
][1 + log(

C(x, y, ρ)

D(y, ρ)
)]

=
1

1 + ρ

∑

x

[p̄ρ

x |y (x, y) log(C(x, y, ρ)) − p̄ρ

x |y (x, y)
∑

s

p̄ρ

x |y (s, y) log(C(s, y, ρ))][1 + log(p̄ρ

x |y (x, y))]

=
1

1 + ρ

∑

x

p̄ρ

x |y (x, y)[log(p̄ρ

x |y (x, y)) −
∑

s

p̄ρ

x |y (s, y) log(p̄ρ

x |y (s, y))][1 + log(p̄ρ

x |y (x, y))]

=
1

1 + ρ

∑

x

p̄ρ

x |y (x, y) log(p̄ρ

x |y (x, y))[log(p̄ρ

x |y (x, y)) −
∑

s

p̄ρ

x |y (s, y) log(p̄ρ

x |y (s, y))]

=
1

1 + ρ

∑

x

p̄ρ

x |y (x, y) log(p̄ρ

x |y (x, y)) log(p̄ρ

x |y (x, y)) −
1

1 + ρ
[
∑

x

p̄ρ

x |y (x, y) log(p̄ρ

x |y (x, y))]2

≥ 0 (109)

The inequality is true by the Cauchy-Schwartz inequality and by noticing that
∑

x p̄ρ

x |y (x, y) = 1.
�

These properties will again be used in the proofs in the following lemmas.

Lemma 11
∂H(p̄ρ

x|y
)

∂ρ
≥ 0

Proof:

∂ A(y,ρ)
B(ρ)

∂ρ
=

1

B(ρ)2
(
∂A(y, ρ)

∂ρ
B(ρ) −

∂B(ρ)

∂ρ
A(y, ρ))

=
1

B(ρ)2
(A(y, ρ)H(p̄ρ

x |y=y
)B(ρ) − H(p̄ρ

x |y)B(ρ)A(y, ρ))

=
A(y, ρ)

B(ρ)
(H(p̄ρ

x |y=y
) − H(p̄ρ

x |y))

Now,

47

∂H(p̄ρ

x |y)

∂ρ
=

∂

∂ρ

∑

y

A(y, ρ)

B(ρ)

∑

x

C(x, y, ρ)

D(y, ρ)
[− log(

C(x, y, ρ)

D(y, ρ)
)]

=
∂

∂ρ

∑

y

A(y, ρ)

B(ρ)
H(p̄ρ

x |y=y
)

=
∑

y

A(y, ρ)

B(ρ)

∂H(p̄ρ

x |y=y
)

∂ρ
+
∑

y

∂ A(y,ρ)
B(ρ)

∂ρ
H(p̄ρ

x |y=y
)

≥
∑

y

∂ A(y,ρ)
B(ρ)

∂ρ
H(p̄ρ

x |y=y
)

=
∑

y

A(y, ρ)

B(ρ)
(H(p̄ρ

x |y=y
) − H(p̄ρ

x |y))H(p̄ρ

x |y=y
)

=
∑

y

A(y, ρ)

B(ρ)
H(p̄ρ

x |y=y
)2 − H(p̄ρ

x |y)2

= (
∑

y

A(y, ρ)

B(ρ)
H(p̄ρ

x |y=y
)2)(

∑

y

A(y, ρ)

B(ρ)
) − H(p̄ρ

x |y)2

≥(a) (
∑

y

A(y, ρ)

B(ρ)
H(p̄ρ

x |y=y
))2 − H(p̄ρ

x |y)2

= 0 (110)

where (a) is again true by the Cauchy-Schwartz inequality. �

Lemma 12
∂D(p̄ρ

xy‖pxy)
∂ρ

= ρ
∂H(p̄ρ

x|y
)

∂ρ

Proof: As shown in Lemma 15 and Lemma 17 respectively:

D(p̄ρ
xy
‖pxy) = ρH(p̄ρ

x |y) − log(
∑

y

(
∑

x

pxy (x, y)
1

1+ρ)1+ρ)

H(p̄ρ

x |y) =
∂ log(

∑

y(
∑

x pxy (x, y)
1

1+ρ)1+ρ)

∂ρ

We have:

∂D(p̄ρ
xy‖pxy)

∂ρ
= H(p̄ρ

x |y) + ρ
∂H(p̄ρ

x |y)

∂ρ
−

∂ log(
∑

y(
∑

x pxy (x, y)
1

1+ρ)1+ρ)

∂ρ

= H(p̄ρ

x |y) + ρ
∂H(p̄ρ

x |y)

∂ρ
− H(p̄ρ

x |y)

= ρ
∂H(p̄ρ

x |y)

∂ρ
(111)

�

48

Lemma 13 sign
∂[D(p̄ρ

xy‖pxy)−H(p̄ρ

x|y
)]

∂ρ
= sign(ρ − 1).

Proof: Using the previous lemma, we get:

∂D(p̄ρ
xy‖pxy) − H(p̄ρ

x |y)

∂ρ
= (ρ − 1)

∂H(p̄ρ

x |y)

∂ρ

Then by Lemma 11, we get the conclusion. �

Lemma 14

ρH(pρ
xy

) − (1 + ρ) log(
∑

y

∑

x

pxy (x, y)
1

1+ρ) = D(pρ
xy
‖pxy)

Proof: By noticing that log(pxy (x, y)) = (1 + ρ)[log(pρ
xy (x, y)) + log(

∑

s,t pxy (s, t)
1

1+ρ)]. We have:

D(pρ
xy
‖pxy) = −H(pρ

xy
) −

∑

x,y

pρ
xy

(x, y) log(pxy (x, y))

= −H(pρ
xy

) −
∑

x,y

pρ
xy

(x, y)(1 + ρ)[log(pρ
xy

(x, y)) + log(
∑

s,t

pxy (s, t)
1

1+ρ)]

= −H(pρ
xy

) + (1 + ρ)H(pρ
xy

) − (1 + ρ)
∑

x,y

pρ
xy

(x, y) log(
∑

s,t

pxy (s, t)
1

1+ρ)

= ρH(pρ
xy

) − (1 + ρ) log(
∑

s,t

pxy (s, t)
1

1+ρ) (112)

�

Lemma 15

ρH(p̄ρ

x |y) − log(
∑

y

(
∑

x

pxy (x, y)
1

1+ρ)1+ρ) = D(p̄ρ
xy
‖pxy)

Proof:

D(p̄ρ
xy
‖pxy) =

∑

y

∑

x

A(y, ρ)

B(ρ)

C(x, y, ρ)

D(y, ρ)
log(

A(y,ρ)
B(ρ)

C(x,y,ρ)
D(y,ρ)

pxy (x, y)
)

=
∑

y

∑

x

A(y, ρ)

B(ρ)

C(x, y, ρ)

D(y, ρ)
[log(

A(y, ρ)

B(ρ)
) + log(

C(x, y, ρ)

D(y, ρ)
) − log(pxy (x, y))]

= − log(B(ρ)) − H(p̄ρ

x |y) +
∑

y

∑

x

A(y, ρ)

B(ρ)

C(x, y, ρ)

D(y, ρ)
[log(D(y, ρ)1+ρ) − log(C(x, y, ρ)1+ρ)]

= − log(B(ρ)) − H(p̄ρ

x |y) + (1 + ρ)H(p̄ρ

x |y)

= − log(
∑

y

(
∑

x

pxy (x, y)
1

1+ρ)1+ρ) + ρH(p̄ρ

x |y)

�

49

Lemma 16

H(pρ
xy

) =
∂(1 + ρ) log(

∑

y

∑

x pxy (x, y)
1

1+ρ)

∂ρ

Proof:

∂(1 + ρ) log(
∑

y

∑

x pxy (x, y)
1

1+ρ)

∂ρ

= log(
∑

t

∑

s

pxy (s, t)
1

1+ρ) −
∑

y

∑

x

pxy (x, y)
1

1+ρ

∑

t

∑

s pxy (s, t)
1

1+ρ

log(pxy (x, y)
1

1+ρ)

= −
∑

y

∑

x

pxy (x, y)
1

1+ρ

∑

t

∑

s pxy (s, t)
1

1+ρ

log(
pxy (x, y)

1
1+ρ

∑

t

∑

s pxy (s, t)
1

1+ρ

)

= H(pρ
xy

) (113)

�

Lemma 17

H(p̄ρ

x |y) =
∂ log(

∑

y(
∑

x pxy (x, y)
1

1+ρ)1+ρ)

∂ρ

Proof: Notice that B(ρ) =
∑

y(
∑

x pxy (x, y)
1

1+ρ)1+ρ, and ∂B(ρ)
∂ρ

= B(ρ)H(p̄ρ

x |y) as shown in Lemma 10.
It is clear that:

∂ log(
∑

y(
∑

x pxy (x, y)
1

1+ρ)1+ρ)

∂ρ
=

∂ log(B(ρ))

∂ρ

=
1

B(ρ)

∂B(ρ)

∂ρ

= H(p̄ρ

x |y) (114)

�

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[2] C. Chang and A. Sahai. The error exponent with delay for lossless source coding. IEEE
Information Theory Workshop, March 2006.

[3] C. Chang and A. Sahai. Upper bound on error exponents with delay for lossless source coding
with side-information. Proc. Int. Symp. Inform. Theory, July 2006.

50

[4] T. M. Cover. A proof of the data compression theorem of Slepian and Wolf for ergodic sources.
IEEE Trans. Inform. Theory, 21:226–228, March 1975.

[5] I. Csiszár and J. Körner. Information Theory, Coding Theorems for Discrete Memoryless
Systems. Akadémiai Kiadó, 1981.

[6] S. C. Draper. Universal incremental slepian-wolf coding. In Proc. 42nd Allerton Conf. on
Communication, Control and Computing, October 2004.

[7] S. C. Draper and A. Sahai. Noisy feedback improves communication reliability. In Proc. Int.
Symp. Inform. Theory, 2006.

[8] G. Forney. Convolutional codes iii. sequential decoding. Information and Control, 25(3):267–
297, 1974.

[9] R. G. Gallager. Source coding with side information and universal coding. Technical Report
LIDS-P-937, Mass. Instit. Tech., 1976.

[10] F. Jelinek. Buffer overflow in variable length coding of fixed rate sources. IEEE Trans. Inform.
Theory, 14:490–501, May 1968.

[11] P. Koulgi, E. Tuncel, S. Regunathan, and K. Rose. On zero-error coding of correlated sources.
IEEE Trans. Inform. Theory, 49:2856–2873, November 2003.

[12] A. Lapidoth and P. Narayan. Reliable communication under channel uncertainty. IEEE Trans.
Inform. Theory, 44:2148–2177, October 1998.

[13] A. Sahai and T. Şimşek. On the variable-delay reliability function of discrete memoryless
channels with access to noisy feedback. In IEEE Information Theory Workshop, San Antonio,
Texas, 2004.

[14] Anant Sahai. Why block length and delay are not the same thing. Submitted to IEEE Trans.
Inform. Theory, 2006.

[15] Anant Sahai and Sanjoy Mitter. Source coding and channel requirements for unstable pro-
cesses. Submitted to IEEE Trans. Inform. Theory, 2006.

[16] D. Slepian and J. K. Wolf. Noiseless coding of correlated information sources. IEEE Trans.
Inform. Theory, 19:471–480, July 1973.

[17] L. Weng, S. Pradhan, and A. Anastasopoulos. Error exponent regions for gaussian broadcast
and mulitple access channels. submitted to Transactions on Information Theory, 2005.

51

