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Abstract— Random binning arguments underlie many
results in information theory. In this paper we introduce
and analyze a novel type of causal random binning –
“sequential” binning. This binning is used to get stream-
ing Slepian-Wolf codes with an “anytime” character. At
the decoder, the probability of estimation error on any
particular symbol goes to zero exponentially fast with
delay. In the non-distributed context, we show equivalent
results for fixed-rate streaming entropy coding. Because
of space constraints, we present full derivations only for
the latter, stating the results for the distributed problem.
We give bounds on error exponents for both universal and
maximum-likelihood decoders.

I. I NTRODUCTION

Consider the “lossless” entropy coding of a discrete
memoryless source. One approach is to use a fixed-
length block code, and accept some probability of encod-
ing error. Errors occur when the realized source sequence
is sufficiently atypical that it is not indexed by the code.
The probability of such an event can be made as small
as desired by using a sufficiently long block length.
This block-length induces an end-to-end system delay.
An alternate approach is to use a variable-length code.
These codes achieve a zero-error probability by using
longer codewords to encode more atypical sequences.
These codes are characterized by variable delay – for a
fixed communication rate, the more atypical the source
sequence, the more bits to encode, and therefore the
longer the delay before decoding.

Both fixed and variable-length codes can be made
universal over all stationary memoryless sources with
an entropy lower than the target coding rate. For fixed-
length codes, the encoder can simply “bin” the ob-
served sequence. The decoder can then use a minimum
empirical entropy rule to decode universally, without
knowledge of source statistics. In the universal variable-
length case, it is the encoder that traditionally does an
explicit or implicit estimation of statistics so that it can
assign longer codewords to less likely sequences.

Now consider lossless entropy coding in the context
of Slepian-Wolf codes [6]. In Slepian-Wolf coding, we
cannot use variable-rate codes to get a zero probability of

error, even with known statistics. This is easiest to see by
example. Supposex is a sequences of independent identi-
cally distributed (i.i.d.) uniform binary random variables,
related toy through a memoryless binary symmetric
channel with crossover probabilityρ < 0.5. The Slepian-
Wolf sum-rate bound isH(x , y) = 1 + H(ρ) < 2.
But, since the individual encoders only see uniformly
distributed binary sources, they do not know when the
sources are behaving jointly atypically. Therefore, they
have no basis on which to adjust their encoding rates.
For this reason, variable-rate approaches do not yield
zero-error Slepian-Wolf coding.

Motivated by work in “anytime” channel coding [5],
we ask whether we can design a streaming Slepian-Wolf
system. We relax the demand for zero probability of error
with a random delay (as in variable-length coding) and
instead ask for an exponentially decreasing probability of
error for all decoding delays. To build toward this goal,
we introduce a sequential binning scheme in Section
II. We use it to build a streaming fixed-rate universal
entropy code. Using a sequential version of a minimum
entropy decoding rule, the probability of decoding error
decreases exponentially in the delay for all sources
with entropies below the rate of the code. In Section
III, we state our results for streaming Slepian-Wolf
systems under both universal and maximum-likelihood
(ML) decoding. Derivations will appear in [2]. Finally,
in Section IV we discuss and illustrate some of the
differences between streaming and block coding systems.

II. STREAMING ENTROPY CODING VIA SEQUENTIAL

RANDOM BINNING

Source Model: A sequence of i.i.d. random symbols,
xi, i = 1, 2, . . . is observed at the encoder. The distribu-
tion of eachxi is denoted bypx , wherepxi

(x) = px(x)
for all i. At time l the encoder transmits a message
ml which is a function ofx l = [x1, x2, . . . , xl] to the
decoder whereml ∈ {1, . . . , exp[Rx]}. For convenience
we measure rate in nats and for simplicity we assume



that Rx/ ln 2 is an integer.1

Goal: For any timen ≥ n0 the decoder wants to
make an estimatêxn0 = x̂n−∆ = D∆(m1,m2, . . . ,mn),
where ∆ is the decoding delay. We wantPr[x̂n−∆ 6=
xn−∆] to decay exponentially in∆ for all n and∆.

Sequential Binning Encoder:The encoder works by
randomly assigning “parity bits” in a causal manner to
each possible source sequence. At each time step, each
possible source sequence so far is assignedRx/ ln 2 new
parity bits where the parities are all Bernoulli-(0.5).
Since parity bits are assigned causally, if two source
sequences share the same length-l prefix, then their first
lRx/ ln 2 parity bits must match. Subsequent parities are
drawn independently.2 The set (or “bin”) of sequences
that share the same parities as the length-n sourcex
is denotedBx(x). Consider some other possible source
sequencẽx. If, for example,x̃l = x l, but x̃l+1 6= xl+1

then there aren−l opportunities for the parities of̃x and
x to differ. Therefore, by the parity generation process,
Pr[x̃ ∈ Bx(x)] = exp{−(n− l)Rx}.

Decoder: We use a “competitive minimum-entropy-
suffix” decoding rule. The decoding rulêxn−∆ =
D∆(m1, . . . ,mn) starts by first identifying candidate
sequences whose parities match the received bit stream
up to timen. If we observex = x, this is {x̄ s.t. x̄ ∈
Bx(x)}. We score each of these sequences in a two-stage
manner. We get|Bx(x)| − 1 preliminary scores for each
x̄ ∈ Bx(x) by comparing it to each sequence¯̄x ∈ Bx(x)
according to the function

S(x̄|¯̄x) =


l if H(x̄n

l+1) ≥ H(¯̄xn
l+1)

and wherex̄l = ¯̄xl, x̄l+1 6= ¯̄xl+1

n else,
(1)

where, e.g.,H(x̄n
l+1) is the empirical suffix entropy of

x̄. If this entropy is greater than or equal to that of¯̄x, its
score is the lengthl of the longest shared prefix. Else, if
its entropy is strictly less, its score isn.3 The final score

1Note that we can always transform a source with a non-nearly-
integer entropy into another with near-integer entropy by grouping the
right numbers of source symbols together into super-symbols to form
a new source with nearly-integer entropy.

2We call these “parity bits” as they can be generated using an infinite
constraint-length time-varying convolutional code.

3Note that maximum likelihood decoders perform a similar suffix
comparison implicitly since, for a memoryless source, the shared prefix
has the same probability. Thus the sequence with the higher probability
suffix is always more likely. On the other hand, for empirical entropy
decoders, the sequence that has the lower suffix entropy does not
necessarily have the lower overall empirical entropy. Say that the
shared prefix is the all-zeros sequence. Consider two suffixes, the all-
ones suffix, and a suffix that is half ones and half zeros, both of which
are equal in length to the prefix. Although the all-ones suffix has zero
empirical entropy, the sequence that results when the all-ones suffix is
concatenated together with the all-zeros prefix has a higher empirical
entropy than the half-half suffix and the all-zeros prefix.

x8 x̃8 x̄8

0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 1
S(x8|x̃8) = 4 S(x̃8|x8) = 8 S(x̄8|x8) = 1
S(x8|x̄8) = 8 S(x̃8|x̄8) = 1 S(x̄8|x̃8) = 1
S(x8) = 4 S(x̃8) = 1 S(x̄8) = 1

π(x8) = 0 0 0 0 π(x̃8) = 0 π(x̄8) = 0

Fig. 1. Example of scoring mechanism and prefix assignment. In this
examplex8

max = x8, so S(x8
max) = 4 andπ(x8

max) = 0 0 0 0.

of each sequence is the minimum of all its preliminary
scores

S(x̄) = min
¯̄x∈Bx(x),¯̄x6=x̄

S(x̄|¯̄x). (2)

A sequence gets a high score if it is only beaten by
sequences that share long prefixes with it. Each sequence
x̄ ∈ Bx(x) is assigned a final prefix defined as

π(x̄) = x̄S(x̄). (3)

A sequence’s prefixπ(x̄) is the the shortest longest
prefix that x̄ shares with any other sequence¯̄x that is
also in its bin, and which also has a lower suffix entropy.
If S(x̄) ≤ S(¯̄x), and x̄S(x̄) = ¯̄xS(x̄), i.e., π(x̄) is a
prefix of π(¯̄x) then we use the notationπ(x̄) v π(¯̄x) to
denote this subsequence relationship. In fact, we show
in Lemma 1 that ifS(x̄) ≤ S(¯̄x) thenπ(x̄) v π(¯̄x).

We now define the maximum-scoring sequence as

xn
max ≡ arg max

x̄∈Bx(x)

S(x̄). (4)

If there is a tie in (4), one maximum-scoring candidates
is selected randomly. This does not effect our results.
The source estimate at timen is4

x̂n−∆ =

{
xn−∆

max if S(xn
max) ≥ n−∆,

error else.
(5)

An example of the scoring mechanism is given in Fig. 1.
In this example,S(x8|x̃8) < S(x̃8|x8), S(x̃8|x̄8) =
S(x̄8|x̃8), and S(x̄8|x8) < S(x8|x̄8). This shows that
the preliminary scores by themselves do not yield an
ordering. An alternate approach is to decode to the min-
imum entropy sequence. This gives an ordering and does
not require a two-stage decoding approach. However, a
term that is polynomial inn (not ∆) ends up multiplying
the exponential decay (in∆) of the error probability.
This is why we introduce the suffix-decoding rule.

The central characteristics of the decoding rule that
we exploit is encapsulated in the following lemma:

4We could instead have used̂xS(xn
max) = π(xn

max) or x̂n = xn
max,

both of which would generally yield a longer estimate. We choose the
current definition (5) to simplify the decoding error – either we get all
symbols correct up to timen−∆, or we get an error.
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Lemma 1: If S(x̄) ≤ S(¯̄x) thenπ(x̄) v π(¯̄x).
Proof: The proof makes use of two aspects of the

scoring function. First, thatS(x̄) ≤ S(x̄|¯̄x) for all ¯̄x by
definition (2). And second, thatmin{S(x̄|¯̄x), S(¯̄x|x̄)} is
the length of the longest shared prefix ofx̄ and ¯̄x.

First consider the case whenS(x̄|¯̄x) ≤ S(¯̄x). Under
this assumption we have

π(x̄)
(a)
≡ x̄S(x̄)

(b)

v x̄S(x̄|¯̄x) (c)
= ¯̄xS(x̄|¯̄x)

(d)

v ¯̄xS(¯̄x) ≡ π(¯̄x).

The first equality(a) is the definition ofπ(x̄). The
first subsequence relationship(b) comes fromS(x̄) ≤
S(x̄|¯̄x) for all ¯̄x by definition (2). The equality(c)
comes from the assumption thatS(x̄|¯̄x) ≤ S(¯̄x). This
implies thatS(x̄|¯̄x) is the length of the longest shared
prefix of x̄ and ¯̄x and therefore that their firstS(x̄|¯̄x)
symbols match. The second subsequence inequality(d)
also follows from the assumption thatS(x̄|¯̄x) ≤ S(¯̄x).

Second, consider the case whenS(x̄|¯̄x) > S(¯̄x).
Note that this implies that the length of the longest
shared prefixsmin = min{S(x̄|¯̄x), S(¯̄x|x̄)} ≥ S(¯̄x). We
therefore have

x̄smin= ¯̄xsmin
(a)

w ¯̄xS(¯̄x) ≡ π(¯̄x)
(b)

w ¯̄xS(x̄) (c)
= x̄S(x̄) ≡ π(x̄)

The relation(a) follows from smin ≥ S(¯̄x), and (b)
by the given thatS(¯̄x) ≥ S(x̄). Since smin ≥ S(¯̄x)
and we are given thatS(¯̄x) ≥ S(x̄) in the statement
of the lemma, thereforesmin ≥ S(x̄). Therefore since
x̄smin = ¯̄xsmin we also havē̄xS(x̄) = x̄S(x̄), which we
apply in (c). �

Lemma 1 proves that the prefixesπ(x̄) for x̄ ∈ Bx(x)
have a well-defined order. This means that that firstS(x)
symbols of the estimate are correct, whereS(x) is the
score of the random sourcex. Thus, decoding errors
can only occur whenS(x) < n − ∆. Of course,S(x)
is random. In the remainder of this section we bound
Pr[S(x) < n−∆] by a decaying exponent in∆.

Theorem 1:Given a rateRx > H(px), then for all
E < Er(Rx) there is a constantK > 0 such that
Pr[x̂n−∆ 6= xn−∆] ≤ K exp{−∆E} for all n, ∆ ≥ 0
where

Er(Rx) = inf
q

D(q‖px) + |Rx −H(q)|+, (6)

and where|z|+ = z if z ≥ 0 and |z|+ = 0 if z < 0.
Proof Strategy: To lead to a decoding error, some

other sequences̃x must (i) satisfy the parity bits, i.e.,
x̃ ∈ Bx(x), and (ii) must give a scoreS(x|x̃) = l <
n −∆. If S(x) ≥ n −∆, no such sequence exists. We
bound Pr[S(x) < n − ∆] by partitioning all possibly
misleading sequences{x̃ s.t x̃ ∈ Bx(x), x̃ 6= x}, into

disjoint subsets determined by the first symbol in which
they differ fromx. Thus, Pr[S(x) < n−∆] = . . .

=
∑
Px

∑
x∈TPx

Pr[S(x) < n−∆|x] px(x) (7)

=
∑
Px

∑
x∈TPx

n−∆−1∑
l=1

Pr[∃ x̃ s.t. x̃l = xl, x̃l+1 6= xl+1, . . .

S(x|x̃) = l, x̃ ∈ Bx(x)|x] px(x) (8)

≤
n−∆−1∑

l=1

∑
Px

∑
x∈TPx

min[1,
∑

x̃ s.t. x̃l = xl,
x̃l+1 6= xl+1,

S(x|x̃) = l

Pr[x̃ ∈ Bx(x)]] px(x)

=
n−∆−1∑

l=1

∑
P l,P n−l

∑
xl ∈ T

P l ,

xn
l+1 ∈ T

P n−l

min[1,
∑

x̃ s.t. x̃l = xl,
x̃l+1 6= xl+1,

H(x̃n
l+1) ≤ H(xn

l+1)

. . .

exp{−(n− l)Rx}] px(x) (9)

=
n−∆−1∑

l=1

∑
P l,P n−l

∑
xl ∈ T

P l ,

xn
l+1 ∈ T

P n−l

min[1,
∑

P̃ n−l s.t.

H(P̃ n−l) ≤ H(P n−l)

. . .

∑
x̃n

l+1∈TP̃ n−l

exp{−(n− l)Rx}] px(x) (10)

=
n−∆−1∑

l=1

∑
P l,P n−l

∑
xl ∈ T

P l ,

xn
l+1 ∈ T

P n−l

min[1, (n− l + 1)|X | . . .

exp{−(n− l)[Rx −H(Pn−l)]}] px(x) (11)

≤
n−∆−1∑

l=1

(n− l + 1)|X |
∑
P n−l

∑
xn

l+1∈TP n−l

exp{−(n− l)[. . .

|Rx−H(Pn−l)|++D(Pn−l‖px) + H(Pn−l)]} (12)

≤
n−∆−1∑

l=1

(n− l + 1)|X |
∑
P n−l

exp{−(n− l) . . .

inf
q

[D(q‖px) + |Rx −H(q)|+]} (13)

≤
n−∆−1∑

l=1

(n− l + 1)2|X | exp{−(n− l)Er(Rx)} (14)

≤
n0−1∑
l=1

K1 exp{−(n0 + ∆− l)[Er(Rx)− γ]} (15)

≤K2 exp{−∆[Er(Rx)− γ]}. (16)

After conditioning on the realized source sequence in (7),
the remaining randomness is only in the binning. In (8)
we decompose the error event into a number of mutually
exclusive events, and in the following line apply the
union bound. In (9) we reenumerate the possible source
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sequences in terms of the shared prefixxl = x̃l and the
differing suffixesxn

l+1 6= x̃n
l+1. We defineP l andPn−l

as the types, andTP l and TP n−l as their type classes,
wherexl ∈ TP l andxn

l+1 ∈ TP n−l . We also rewrite the
constraintS(x|x̃) = l explicitly asH(x̃n

l+1) ≤ H(xn
l+1).

In (10) by the scoring rule (1), the only suffixesx̃n
l+1 that

can causeS(x) to be belown−∆ are those with lower
suffix entropy thanH(xn

l+1) = H(Pn−l). We sum over
this set. In going from (10) to (11) we first note that the
argument of the inner-most summation (overx̃n

l+1) does
not depend onx. We then use the following relations:
(i)
∑

x̃n
l+1∈TP̃ n−l

= |TP̃ n−l | ≤ exp{(n − l)H(P̃n−l)},
which is a standard bound on the size of the type
class, (ii)H(P̃n−l) ≤ H(Pn−l) by the minimum-suffix-
entropy decoding rule, and (iii) the polynomial bound
on the number of types,|{P̃n−l}| ≤ (n − l + 1)|X |.
In (12) we use the memoryless property of the source
to sum out overpxl(xl), and pull the polynomial term
out of the minimization. We also usepxn

l+1
(xn

l+1) =
exp{−(n − l)[D(Pn−l‖px) + H(Pn−l)]} for all x ∈
TP n−l and combine the exponents. As the expression no
longer depends onxn

l+1, in (13) we simplify by using
|TP n−l | ≤ exp{(n− l)H(Pn−l)}. In (14) we define the
error exponentEr(Rx) , infq[D(q‖px)+|Rx−H(q)|+],
and use the polynomial bound on the number of types.
In (15) we incorporate the polynomial into the exponent.
Namely, for all a > 0, b > 0, there exists aC such
that za ≤ C exp{b(z − 1)} for all z ≥ 1. We then use
n = n0 + ∆ to make explicit the delay-dependent term.
Pulling out the exponent in∆, the remaining summation
is a sum over decaying exponentials, and can be bounded
by a constant. Together withK1, this gives the constant
K2 in (16). �

This proves Theorem 1. Note that theγ in (16)
does not enter the optimization becauseγ > 0 can be
picked equal to any constant. The choice ofγ effects the
constantK in Theorem 1.

III. STREAMING SLEPIAN-WOLF CODING

In this section we present random coding error ex-
ponents for streaming Slepian-Wolf systems. The proof
techniques used are extensions of those used for stream-
ing entropy coding in Section II. We give results both
for universal and maximum-likelihood decoders.

In a Slepian-Wolf system the source(x, y) is
jointly distributed in a memoryless manner where
pxn,yn(xn, yn) =

∏n
i=1 px,y (xi, yi) for all n. One en-

coder observes thexn stream, and causally encodes it
using the sequential random binning strategy presented
in Section II at rateRx. The second encoder observesyn,
and uses the same strategy at rateRy . We want to design

a system such thatPr[(xn−∆, yn−∆) 6= (x̂n−∆, ŷn−∆)]
decays exponentially in∆.

For universal decoding we use a weighted joint variant
of the preliminary scoring rule (1). In particular, say that
x̄l = ¯̄xl, x̄l+1 6= ¯̄xl+1, andȳk = ¯̄yk, ȳk+1 6= ¯̄yk+1. Then,
if l ≤ k, the preliminary score isS(x̄, ȳ|¯̄x, ¯̄y) = . . .

l if (n− l)H(x̄n
l+1|ȳn

l+1) + (n− k)H(ȳn
k+1) ≥

(n− l)H(¯̄xn
l+1|¯̄yn

l+1) + (n− k)H(¯̄yn
k+1)

n else.

If k < l, swapx with y and l with k. The rest of the
decoding rule is defined as before. This gives,

Theorem 2:Given a rate pair(Rx, Ry) such that
Rx > H(px|y ), Ry > H(py |x), Rx + Ry > H(pxy ),
then for all E < Er(Rx, Ry) there is a constantK >
0 such thatPr[(x̂n−∆, ŷn−∆) 6= (xn−∆, yn−∆)] ≤
K exp{−∆E} for all n, ∆ ≥ 0 whereEr(Rx, Ry) =

min
[

inf
qy,q̄y,qx|y,λ

{
λD(qx|yqy‖pxy )+λ̄D(qx|y q̄y‖pxy ) . . .

+
∣∣λ[Rx −H(qx|y|qy)] + λ̄[Rx + Ry −H(qx|y q̄y)]

∣∣+ },

inf
qx,q̄x,qy|x,λ

{
λD(qy|xqx‖pxy ) + λ̄D(qy|xq̄x‖pxy ) . . .

+
∣∣λ[Ry −H(qy|x|qx)]+λ̄[Rx + Ry −H(qy|xq̄x)]

∣∣+ }]
where0 ≤ λ ≤ 1, λ̄ = (1−λ), and where the probability
is taken over both random encoders and the random
source. This distributionsqx|y and qy|x are conditional,
qy, q̄y, qx, and q̄x are marginal distributions, and, e.g.,
qx|yqy is a joint distribution with a conditional entropy
expressed asH(qx|y|qy).

In the maximum-likelihood context, the decoder se-
lects the most likely pair of sequences, giving

Theorem 3:Given a rate pair(Rx, Ry), such that
Rx > H(px|y ), Ry > H(py |x), Rx + Ry > H(pxy ),
then for all E < Er(Rx, Ry) there is a constantK >
0, such thatPr[(x̂n−∆, ŷn−∆) 6= (xn−∆, yn−∆)] ≤
K exp{−∆E} for all n, ∆ ≥ 0 whereEr(Rx, Ry) =

min

{
inf

λ∈[0,1]
sup

ρ∈(0,1)

Gxλ
(ρ), inf

λ∈[0,1]
sup

ρ∈(0,1)

Gyλ
(ρ)

}
> 0,

and where the probability is taken over both random en-
coders and the random source. The functionsGxλ

(ρ) =
λGx(ρ) + (1− λ)G0(ρ), andGyλ

(ρ) = λGy(ρ) + (1−
λ)G0(ρ), where

Gx(ρ) = ρRx − loge

∑
y∈Y

(∑
x∈X

px,y (x, y)
1

1+ρ

)1+ρ
 ,

4
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Fig. 2. Error exponentEr(Rx, Ry) for a binary-asymmetric example
with H(x , y) = 0.428, evaluated along the symmetric-rate lineRx =
Ry . The source statistics arepx,y (0, 0) = 0.05, px,y (0, 1) = 0.03,
px,y (1, 0) = 0.02, andpx,y (1, 1) = 0.9.

Gy(ρ) = ρRy − loge

∑
x∈X

∑
y∈Y

px,y (x, y)
1

1+ρ

1+ρ
 ,

G0(ρ)=ρ(Rx+Ry)−(1+ρ) loge

∑
x∈X

∑
y∈Y

px,y (x, y)
1

1+ρ

 .

The exponents of Theorems 2 and 3 are generally
smaller than their block-coding counterparts [1], [3].
However, the difference disappears when one of the
sources is observed at the decoder. We also believe that
the exponents of Theorems 2 and 3 can be shown to
be equal using the same techniques that work for other
comparisons of universal and ML error exponents.

In Figure 2 we plot the ML error exponent for a
binary-asymmetric example along the symmetric rate
line Rx = Ry. The maximum difference between this
exponent and Gallager’s [3] occurs atRx+Ry = 0.6222,
where the difference is0.0011. The maximum difference
at any rate pair for this example is0.003. We do not
claim that our error exponents are optimal, but it is
important to realize that a consequence of our theo-
rems is thatevery source symbolis eventually decoded
correctly with probability1. Atypical bursts of source
symbols result in increased delay till correct decoding,
but as long as the rate pair lies within the achievable
region, everything is decoded correctly eventually. This
is impossible to achieve with block-codes.

IV. D ISCUSSION ANDEXAMPLE

In this paper we have derived error exponents for
sequential binning schemes as applied to entropy and
distributed source coding. In the general Slepian-Wolf
setting of two remote encoders, the exponents of The-
orems 2 and 3 are generally smaller than their block-
coding counterparts, although, as in the example of
Figure 2, the difference is usually quite small.

We have not yet shown upper bounds on the error
exponents of streaming systems. The next example illus-
trates that such error exponents are not necessarily upper-
bounded by their block-coding counterparts. Consider a

system observing a stream of tertiary i. i. d. symbols with
distribution px(a) = 0.9, px(b) = 0.05 and px(c) = 0.05.
At each time, the encoder observes a pair of these
symbols, and can send3 bits to the decoder. The best
possible block-coding error exponent for this system can
be shown by using [1], Theorem 2.15, to equal1.474
bits per symbol pair. Now consider the following ad-hoc
streaming strategy, which we show results in a much
higher exponent.

The encoder takes each pair of source symbols and
maps them into either two or four bits as follows. If
the ith source-pairxi = (a, a), the encoder outputs00.
For any other pair the encoder maps it into a four-bit
prefix code, i.e., the bit-tuplets1000, 1001, . . . , 1111.
The encoder output is fed into an infinite-length first-
in-first-out buffer, the oldest three bits of which are
sent to the decoder at each time step, padded by zeros
if the buffer is empty. Note that to stay synchronized
the decoder can count symbols to tell when the buffer
is empty. Denote the number of bits in the buffer at
time i by bi. If xi = (a, a), then bi+1 = bi − 1, else
bi+1 = bi + 1. The stationary distribution ofbi exists,
and islimi→∞ Pr[bi = l] = µl = 0.7654(0.19/0.81)l.

If bn0 ≤ Rx∆−4, then by timen0 +∆, the encoding
of symbol pairxn0 will certainly have been received by
the decoder. Thus, in steady-state,Pr[x̂n−∆ 6= xn−∆] ≤
Pr[bn−∆ ≥ Rx∆−4] =

∑∞
l=Rx∆−4 µl ≤ 292−2.09Rx∆.

For Rx = 3 bits per symbol pair, this gives an error
exponentEr(3) = 6.27, far larger than the block-
coding exponent of1.474. The streaming exponent can
be further increased by mappingxi = (a, a) to 0 instead
of to 00. A related study of buffer overflow and variable
length coding was made by Jelinek in [4].
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