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Abstract— Discrete-time memoryless multiple access channelsin the point-to-point settings as the decoder is forced to make
(MACs) are a useful abstraction of the uplink for many central- g bit-decision at a particular delay. The relevant exponent turns
ized wireless systems. They capture the issues involved with manyqut to be the random block-coding error exponent, and in the

different users wanting to simultaneously send information to a high-rat . o1 tell that d hi hiah
single site. Traditional MAC analysis proceeds in the context of igh-rate regime, [2] tells us that no code can achieve a higher

block codes with the messages being known in advance by the€xponent with delay.In [4], Sahai further identifies the delay-

encoders. Instead, we look at a sequential setting. Each usersuniversal or “anytime” variation on sequential codes in which
message evolves in real-time as bits stream in to the encoders. Inthe choice of the delay is left entirely up to the decoder. In [5],
this context, we look at the probability of error not at the block 5y time communication problems are shown to be intimately
level, but at the bit-level. Furthermore, in place of block-length, ted t bl f aut fi trol. R ty in [6

we look at the delay between when the bit arrives at the encoder connected to pr(_) ems orau o_ma_ IC control. ecen_ y 'n (61,
and when it is decoded by the central decoder. we brought anytime ideas to distributed source-coding in the

The sequential random coding error exponent is studied Slepian-Wolf context.

and shown to be positive in the whole achievable rate region . . s .
for multiple access channels. Furthermore, we show that this MAC channels [7] are interesting for distributed wireless

exponent can be achieved in a delay-universal or “anytime” COMMunication systems, and yet, the study of such channels
fashion in that the encoder does not have to specify the target has focused almost entirely on the block-coding case. The
delay. The choice of decoding delay is left up to the decoder capacity region and random coding error exponents for block
which i_s free_tp vary thi_s on an application spe_qific basis — the coding are explained in [8],[9],[7] and [10] respectively. In
xirl}gsé.lt is willing to wait, the lower the probability of bit error [11], the error exponent for tree coding is studied, but the
decoding is considered in the block style. The encoding
. INTRODUCTION consists of two parts, encoded information bits and a tail

) ] o ) to achieve more reliability. The error exponent is defined as
In the point-to-point communication scenario, there arEgg(Pe.), where N, is the length of the tail. Bounded delay

many types of codes. The block-coding paradigm has a Se'a‘ggéding had not been considered.
infinite sequence of messages, each of which is quite large. ) L
Each of these messages is assumed to be known to thive study the sequential communication problem for mul-

encoders at the beginning of the epoch, and the decodefifle access channel and derive the random coding error

assumed to produce an estimate for it by the end of gxponents for the problem. In this paper, we study the random

epoch. The next message is considered in the next epog:q)]c_iing error exponents for.multipIeIaC(_:_ess channel int.he sense
The delay in this context is determined by the epoch size 8f delay-universal, or “anytime,” reliability. The probability of
block-length. The sequential-coding paradigm also has a sefffit®" iS required to go to zero exponentially with delay, where
infinite sequence of messages, but each of these is assufi§qd€lay is chosen entirely at the decoder.
to be quite small. These small messages become available tdhe outline of the paper is as follows. In Section 1l we will
the encoder as time evolves, and are used to generate chafirstl describe the model of the multiple access channel and
input symbols causally. There is magpriori choice of an epoch sequential channel coding. Then in Section 11l we will derive
or block-length. Instead, the decoder decodes estimates of e random coding bound on sequential coding for multiple
messages as time goes on, but does so with some delay. access channel.

While the block-coding paradigm has certainly attracted
more academic interest, there are many interesting features in
the sequential picture. Convolutional and tree codes represenin [2], Pinsker also tries to claim that the same bound holds with feedback,
the most well known cases of sequential codes, though th@gbwe have recently found that he is wrong! Th_is is_ easiest tp see using an
techniques can also be used to construct block-codes. In sure channel example, and the full story of this will be told in [3]. It turns

] . ! . that block-length and delay interact very differently with feedback when
Forney reviews how the probability of error varies with delay comes to the probability of error!
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C. Sequential Channel Coding

The model of sequential channel coding is as follows. For
A. Multiple Access Channel rate 1, the information bitsa; € {0,1} come to the encoder

timeid, i = 1,2,...,n,.... The encoder must send out an

- . t
AS. shown in F|g L, ther_e are two independent enco_ders fz‘)ﬂacoded symbol right away, that is only allowed to depend
two independent information sources and B. The multiple na;j < i, in a causal fashion. The decoder can choose a
VA = U .

access channel is characterized by a transition pmbab"&}gcision time and hence delay for a certain information bit, and

matn; Pmtahc(y.lx’uf[)fWhe:ﬁ y < yd IS fthe. cfhanmth Output, 4o expected probability of decoding error must be bounded
x € X is the input from the encoder for information sourc y an exponential function of the delay.

A, andéu € W is the input from the encoder for information In order to achieve any rational rafe — %’ we encoded
sources. ] ] ) ~information bits intoC' channel uses.
Theorem 1:Achievable capacity region [8],[7]:The achiev- pefinition 1: (A,C,Q4,X) random sequential coding

able rate regiork is the convex hull of the set of rate pairsscheme: For a distribution) 4 defined on the alphabet
(Ra, Rp), for some distributiong) 4, @, satisfy each of the 54 integerst, ¢ € A/, The encode€ is a sequence of maps

Il. PROBLEM SETUP

inequalities {&},7 = 1,2,.... The outputs of; are the outputs of the

Ra+ Rp < I(X,W:Y) encoder from timgj — 1)Cj 1to j(,;. Wherec

0< Ry <I(X;Y|W) 5}:{271}J x [0, 1]C—>X

A - A
0< Rp < I(W;Y|X) E(@™,A0)T) = 20 1yem
Where A\(j);,¢ = 1,2,..,C;j = 1,2,... are iid random

where  P(y) = >, Qa(@)Qp(W)Puac(ylz,w).  \araples uniformly distributed ifo, 1]. And
P(y|£L’) = Z’r QA(m)Pmac(y‘wvw) and P(y|w) = )
Zw QB (W) Prac(ylz, w). T(j—1)C+i = X, i=1,2,...,C
The decoding error probability can be arbitrarily close)tm k—1 N k
the capacity region. If Zl:l Qa(X) <) < 21:1 Qa(X)

The series of random seried?) | ,j = 1,2, ... are known
at the encoder and the decoder.

By the construction of the codebook, it's obvious that the

The random block-coding error exponent of the multiplencoder iscasual, i.e. for any two information sequence”
access channel is studied in [10]. Consider an ensembleanfial**, if for somek < min(n,m) s.t.af* = af*, then the
(n,m,1) where encodeil hasm equal-probable messagesfirst kC' outputs of the encoder for both information sequence
encoder2 hasl messages, all with channel uses. The inputsare the same.

B. Random Coding Error Exponents

to the channe{Z,, .., 7,,, } are chosen according @4 («7) =  The rate of the encoder in bits i3, = 2.

[T-, Qa(x;) and {1, ..,w;} are independently chosen ac-

cording to Qp(w}) = [[i—, @p(w;). Write Q(z,w) = Forney showed in [1] that the random coding error exponent
Qa(x)Qp(w). defined in [12] can be achieved in the sequential setup by

Theorem 2:[10] The expected probability of making aforcing the decoder to give its best decision with deflay-i)C
decoding error for either block over the ensemble satisfieBannel uses. The probability of decoding error of thk

P,<P., +P,,+P.,,. Where information source block aftetC' channel uses is

. —(n—1)CE,.(R
P, < 2 nl-piRitEo, (pi.Q)] o) Pe, (i) < K2~ (n=)CE(R) @)

WhereK is a constant and,.(R) is the random coding bound
Vo, € [0,1], i = A,B,AB,Ry = 8™ Ry — 150 defined in [12].



D. Encoding and Decoding Where@ = Q4Qp and E* is positive in the inner region of

The encoders and decoder work as following. Encodite capacity region. _
£4 uses an(A, C,Q 4, X) random sequential scheme, mean- By leting «; = 0,1, we can easily see that
while encoder€; uses an(B, C, @, W) random sequential £ < mini—a,p ap{sup,cpo1{—pRi + Eo,(Q,p)}}, where
scheme, whereRy, = 4, Rp = Z,4,B,C € N. After Eo, (Q, p) is defined in Theorem 2. .
sending n blocks of information bits, where encodet, Ve need some preparation before proving the theorem.
encodesn A information bits intonC' inputs to the multiple
access channel and encodsy encodes: B information bits ~ Proposition 1: Partition of {0, 1}"4 x {0,1}"#
into nC' inputs to the multiple access channel. The decoderGiven the information sequence paiey,b7”) we can
receives a sequenas, ...ync. And the decoded information Partition the sef{0,1}"4 x {0,1}"” into (n +1)* subsets.
sequence paira#,b"8) are the sequence pair with the FOrl <jk<n

maximum posterjor probability. Formally, Fo(j, k, (a7, 00B)) =
(ap*,b17) = {(s74,417) € {0,1}™ x {0, 1}
nC nA nB G-1A _ (j-1)A jA j A
al’g(sigi};B) Prac(yr™ [Ea(s17), EB(17)) sy’ =ay 7S{j71)A+1 + agjfl)AH,

i t(k'_l)B _ b(k—l)B th 7& ka }
Where s74 € {0,1}"4, 178 ¢ {0,118 are two binary 1 ke Y(k=1)B+1 7 P(k—1)B+1
information sequences, anfla(s7*) € A"Y.Ex(11P) € For1<j<n

WnC are the inputs to the channel. Notice that each time, the

decoder re-estimates all the information bits. We will show Fo(jyn+1, (a4, b17)) =
that the probability of decoding error of the information bits {(st4,t7B) € {0,1}™ x {0,1}"P|
decays exponentially with delay. G-DA _ (G-1DA _jA JA

51 ! S A+1 7 GG1) A1

1. RANDOM CODING BOUND B = prBy
1 1

In this section we derive a bound on the error probability for

the sequential multiple access channel using the randomize(!lzorl <k=n

encoders in Def 1. We are interested in the error probability Fo(n+1,k, (a?{b’fB)) =

of an information bit given some decoding delay. We state the {(SnA tnB) e {0 1}nA % {0 1}n3|

main result of this paper in Theorem 3 and the proof goes as N, ’ ’

follows. After nC' channel uses, depending on the first wrong 51 =0

decoded block of sourcd and B, we have(n + 1)? disjoint (DB bgk_l)B,tka_l)BH # b0 1B}

error events. We will bound the probability of each error event WA nB WA nB
using the random coding argument and bound the probabilityAnd Fo(n+1n+1, (a4, 077)) = {(a7 %, b77)}.

of decoding error of a particular block by a summation of We use the convention that i < i, a;, is an empty
some of the error probabilities. sequenceF is a partition of{0,1}"4 x {0,1}"# because if

. . . (J1, k1) # (Ja, k2),
A. Error Probability of Decoding Information Sourcé

. nA 1nB : nA inB
After nC channel uses, we have the ML decoded Fn (1, ks (a7, 007)) 0 Fu (2, ka2, (a7, 077)) = @ and
information bitsa?4 and 075, U Fulk (@, 077)) = {0,134 x {0,137
1<j,k<n+1
Theorem 3:After nC' channel uses, write the error
probability of decoding thej’'th block of source A as

Pn({&(j+1)A # a(j+1)A}).

it it Example 1:F,(n+1,n+ 1, (a?4,b75)): in this example,
J J

A=1,B=1,n=2, (a?*,b77) = (00,00) we simply write
P, ({aV A £ g4y < Fo(j,k, (a7, 07B)) as Fj .
ZZA“ ]A“Z . Fi 1 = {(10,10), (10,11), (11,10), (11, 11)}.
(e + oo 2 7 @) Fia={(10,0), (11,01},
Fy ;1 = {(01,10), (01,11)}.

(
o
WheredC = (n+ 1 — j)C is the decoding delay and Fyp = {(01701)7},
P F15 = {(10,00), (11,00)}.
E . ming hoE F31 = {(00,10), (00,11)}.
mlen[o,ll{plbeu[gl]{al(_pl AT Eoa (@) Fy3={(01,00)}. F35 = {(00,01)}.
F3 3= {(00,00)}.

+(1 —a1)(=pr1RaB + Eo,(Q,p1))}},

inf { sup {az(—p2Rp + Eos(Q, p2)) Definition 2: Error EventE,, (j, k, (at#, b7?)):
a2€[0,1] ", €00,1]

+(1 7OZQ)(ff)QRAB+EOAB(Q5102))}}} (4) En(j7k’ (a?AvbeB)) = {(&?A7E?B) € Fn(j7k7 (aalAvb?B))}



We call E,,(j, k, (a74,077)) the (4, k)'th error event. First
More specifically, given information sequence pair

we bound the conditional probability

(a7,b7B), the decoded information sequence pair is nA ,nB nA ;nB
(a4, b7B). We define, (j, k, (a7, b75)),1 < j.k <n+1 PEE7H )jCF"i(fL’Ck ar”, b ) e
as following. s't'Pmac( T @) 2 Prac(yi 1t wi®)
First, E, (5, k, (a7, 075)),1 < j,k < n, is the following |27 Wiy
error event, aftenC channel uses the first decoding error for <[ Z
information sourceA is block j, and the first decoding error (248 BYE P (ks A 075
for information sources is k.
Secondly if the decoder does not make any decoding errors P(Pmc(ylc|x ) 2 Prnac (37 |27, w7)
for A, but the first decoding error fd8 is at thek’th block,l < |27, Wiyt ))]pvvp € [0,1] @)
k < n then the error event i, (n + 1,k, (a}?,b7P)),
similarly for E,,(j,n + 1, (a74,b75)). V(24 mB) € (ka8 i
. . . S 4 g, k, af ), by noticing that
Finally the event of making no decoding errors after fgj,l)c _ xgj ne w§ < _ wﬁk’l € and the memeo-

channel uses is precisely, (n + 1,n + 1, (a4, b75)).

Now we use the random coding bound argument to giv
an upper bound on the probability @, (j, k, (a7, b75)).
Without loss of generality we assume< k. The argument
we use is very similar to the derivation of the random coding
error exponent in [12] and [10]. The error probability is an
expectation taken over all the channel realizations and all the
randomness in the code.

Lemma 1:Random coding bound on thgj, k)'th error
event. Encode€ 4 uses anf(A,C,Q 4, X) random sequen-
tial coding scheme, meanwhil€s independently uses an
E(B,C,Qp,W) random sequential coding schenwinfor-
mation sequence paju}?,b78),1 < j <k <n+ 1.

P (En(j, k, (ai?,077))) <
9= (k=7)C(=pRa+Eo, (Q,p))—(n+1-k)C(—pRap+Eo, 5 (Q:p))

®)
WhereQ = QAQB; EOA (va) and EOAB (va) are defined

in Theorem 2. < Z QA 1)01) QW 1)oi1)
Proof: : The proof here is similar to the derivation of the @ a1 B 1yop)
random coding bound on the block coding error probability in Provae(y2C [77C, w0C)*
[12] P (yizc Iaj:lc7 w}LC>S
The probability of £, (j, k, (a7, b77)) is upper bounded maekIl 1T T o
by the probability of the existence of a sequence pair = Z Qa(@(;Z 1)C+1)QB( (k—1)c+1)
(S?Aat?B) E Fn(]7 kv a71LA7 b?B) S't‘ (E?JC 1)C+1’w(k 1)C+1)
n n n n T (k 1)C (k 1)0 (k 1)0 S
Prac(TC1EA(sT), EB(tTP)) = Prnac(yi€|Ea(al?), Ep(BT7)) Prac(Y(i_1yc1 (-1 C+1’ Wi o)
Wr(ljtg EA(B ") as acjlcs £n(t1 E;x) astlcFé’A(k ) asbxéc P’”‘“(y(J HoplT- 1)C+1’w<y o)
an t77) aswy ince(s74,t17) € Sk, a0,
we h(fv(ex“) e _ ! (] 1)C (w(k ﬁc) (‘7 Slo i) Pmac(y(k 1c+1‘$(k 1)C+17w(k He+1)’ ©)
! B ' Prac(ypl |z )*
_ . mac\d(k—1)C+11" (k—1)C+1> (k 1)C+1
P(En(.]7k7 (a'lAvblB)))
< PE(st4,117) € Fu(h, b, at? 017, Vs > 0,
5.t Prac(y CI:E"C,@”C) > Pmac( 1921, wic)) The size ofF,,(j, k,a}*,b77) can be bounded as
=> 33 Qua)Qpwi) Prac (v |21, wi©) '
nC nc nc |F (],k anA bvlzB)| < 2(n+1—k)(A+B)2(k—J)A
P(E( nA tnB) €F, (]7k anA b’iLB)’ _ 2(n+1 k)CRABQ(k*j)CRA =M (10)
5.t Prac(yy' |x1 ) > PmaC(y?C|x1 w?c)
7w, ubstitute Eqn. 9 into Eqn. 7, and using the union boun
ne hc ynd 6) Substitute Egn. 9 into Eqn. 7, and using the union bound

rglessness of the channel. We have

Prac(yi“[z7¢, w1¢) =

Prrae(y9~ V|20~ 0C ng—l)C)

Prac (s ”&J G-1C+1 Ef D)
Pmac(?/(k Do T o Wi nor)  (8)

Now:

P(P’ma( (yl |7nC w{LC
|x71LC nC7 y ))

?C) Z PTTL(LC(y?C‘xl

)y

( nC erC) Pmac(yfc‘i"c f'n.C)> mac(yilclmilc,w?c)

)

QA(CU(J 1)C+1)QB( k 1)C+1>




argument, we get: Similarly if 1 <k <j<n+1,

PE(s14,117) € Fu(d, b, al?, 01 P), P (En(j.k, (a3, b77))) <
S.t.Pmac(y?clf?’C,ml ) > Pmac 1 |:1:1 w{‘c) 2*(j*k)c(*PRB+EoB (Q.p))—(n+1—3)C(—pRas+Eo 5 (Q,p))
|27, Wi,y c) O
. . Corollary 1: An upper bound o (E,,(j, k, (a74,b75))
<[M Z QA(J?(]QUCH)QB(w(kc—1)c+1) Ao ( +1( . ('k))(C’lE* )
- n n —(n+1—min(j,k
@ o 7&0 Het) P (E”(J’k’ (al b1 ))) <2 ! (14)
Prae(ytf—2C D kD s Where E* is the error exponent defined in Theorem 3.
Y- 1)C+1 (J 1)C+1’ Wi-ne+1 ) .
P (h=1) L1 F1C . Proof: : Without loss of generality, we assumje< k.
mac(y c+1| G-nC+1 W(— 1)C+1) Then from Lemma 1, we know thatp
Pmac(f‘/k 1 C+1|xk 1)C+1> (lcC 1)c+1> e (11)
Pmac(y(k 1)C+1“r(k: 1)C+1’ (k 1)C+1)S P(En(]akv (a?Avb?B))) <
Substitute Eqn. 11 into Egn. 6. And by noticing the mem- 2~ =) (pRe+E0, (Q.0) =1 =k)C(=pRaptFo, 5 (Q.0))
orylessness of the channel and the fact that(z7¢) = = 2*(n+1*j)0(a(*PRB+EoB(Q,p))+(1*a)(*PRAB+EoAB(Qvﬂ))>
etc. We have:
Qalay )QA( G-ve+1); Wherea = 221 € [0, 1]. So
- n nB
P (Ea(i. k. (ai”,b17))) a(=pRp + Eon(Q, p)) + (1 — a)(—pRap + Fo s (@)
< 22 X > in facfo1)(5WPpeio 1) (@1 (~pRa + Fo, (Q, p))
o Miznom Wonos +(1 = a1)((—pRap + Fo,5(Q,))))),
QA(:C?j—l)C-i-l)QB(w?j—l)C—&-l) > E*
nC nC nC
Prac(y(i-nom TGy Wiino) Similarly for j > k. Thus we proved that
(M > QuE e )@@ n0m)  p (B, (j,k, (ap4,517))) < 27 1-mRGRCE D (15)
@ e Py er) Now we are ready for the proof of Theorem 3.
Pmac( (s 11))g+1| (k= 11))S+1,wgl.€:11))g+1)5 Proof:
(?C e J e (271)0 The probability of making a decoding error at time”
Prnac(y ;- 1)c+1| G- 1)c+17w(y Hot)’ (afternC channel uses) on thgth information blockagffl)“‘
Pmac(y(k 1)C+1|x(k 1)C+1,w(k 1)c+1) is upper bounded by making a decoding erroraary block
2 s (12)  with block number not larger than
mac(y(k 1)c+1\$(1€ 1)C+17 (k 1)c+1)
By letting s = 1+, and noticing the fact that andw are Pn({agjl) ” 5{4111)“‘}) < P(U{ Ef4++11)A Ef4++11)A)

dummy variables.
P (B (. k. (a1, 575)))

<My

nC
Yh1)c+1

{ Z Z QA(x?kcfl)CJrl)QB(w?kcil)C+1)

=1
1

P(E,(i, b, (a7, b77)))

n

+

IN
i
3 >
+ I
—_

2—(n+1—min(i,h))CE*

e

@
Il
-
>
Il
s

xz7k-(/;1)c+1 wzlk(iUCJrl) J s, —(n+1—3)CE*
P ( nC |xnC wnC )ﬁ}1+p = E : 2 +
mac\Y(k—1)C+11T (k—1)C+1> W(k—1)C+1 i=1 h=j+1

> > sl ) -
(k=1)C  (k=1)C Z(2j+172l‘)27(n+171)0E

Yi-vo+1 WG-1o+)

i=1
(k—1)C
{ Z Qa x(j—1>c+1) < &2 (n+1-§)CE"
L(F=DC - 1—-92-CkE*
Ti—1)C+1 .

(k=1)C | (k=1)C (k=1)C i1+ e O o
Pmac( G— 1)c+1| (-1 c+1»w(j71)c+1) ey 2 x 2~ (nH1=J)CE Z(j +1- i)2_(]_Z)CE
— 9= (k=7)C(=pRa+Eo,(Q,p))—(n+1-k)C(=pRap+Eo,5(Q:p)) i=1

n+1 _] 2 —(n+1—35)CE*
(13) = (1 —_9-CE* + (1 _ 27CE*)2)2 !
The last equality is true becau@A(mjf) = T[22 Qalwi), d 2

)27dCE*

etc. - (1 —9-CE T (1—2-CE")2



WheredC = (n+ 1 — j)C is the decoding delay. 0307

Now we sketch the proof of whyw* > 0 everywhere in
the interior of the achievable region of Theorem 1. Fivst=
A,B,AB

—q0.12
—pRi + Eoi(p, Q)] p=0 =0
—H0.1
Secondly for(Ra4, Rg) in the interior of R defined in Theo- o
rem 1. 10.08
0
%(_PRi + Eoi(p,Q))]p=0 >0 (16)

Thus 3p; € [0,1],s.t. Ey;(p,Q) > 0,Yp € [0,p4], SOVp €
[0, min;— 4,3 aB(p:)]

' Ra 0307
E*> min (=pR; + Eoi(p,Q)) >0 17)

i=A,B,AB

0 Fig. 3. Sequential Error Exponents of the MAC in Fig. 2 witk= 0.1

IV. AN EXAMPLE

Consider an adder channel followed by a symmetric chanr@|the encoding as time goes on. To address this, we accept
as shown in Fig. 2. We plot the error exponeftsfor e = 0.1 @ certain maximum tolerable delay (or equivalently, a certain
in Fig. 3. The sequential error exponents are positive in t&all enough error probability) beyond which we are no longer
whole capacity region. The value of which minimizes the interested in correcting errors with additional waiting. This can
error exponents in Eqn. 4 is not alway®r 1. If o = 0,1, the then be realized using a (possibly time-varying) convolutional
sequential error exponent is the same as one of block codfffle with a long enough constraint length.Also, we believe
error exponents in [10]. However, on the boundary region ##at sequential decoding [13] might extend to such contexts
R, andR3, R» andR3 in Fig.8 in [10], the value ofy which ~and furthermore, that similar sequential random coding bounds
minimizes Eqn. 4 is nob or 1, thus we have a different errorc¢an be achieved for other multi-terminal problems such as the
exponent bound for sequential random coding as compared’fgadcast channel.
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